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Leonardo da Vinci (1452-1519) is perhaps overrated for his contributions to physical science, since his 
technical approach. Nevertheless important components concerning practical problems of mechanics with 
great technical ability were abounded. He brought alive again the Nemorarius’ (fl. 12th - 13th century) 
tradition and his speculations on mechanics, if immature made known how difficult and elusive were the 
conceptual streams of the foundations of science for practitioners-artisans. Leonardo also had an interest- 
ing and intense relationship with mathematics but merely unhappy insights in his time. The meeting with 
Luca Bartolomeo de Pacioli (1445-1517) was very important for da Vinci since proposing stimulating 
speculations were implemented, but they were not definitive theoretical results. In this paper historical re- 
flections notes on mechanics and mathematics in da Vinci and his relationships with Pacioli are presented. 
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An Outline 

The emergence of the figure of the engineer seen as a techni- 
cian in some way educated in sciences, is a characteristic fea- 
ture of the XV century and the first half of the XVI. Indeed this 
is perhaps the main feature of science, where the reduced crea- 
tivity (real or apparent) of pure scientists, was counterbalanced 
by the great creativity of applied scientists. A short list is suffi- 
cient to give an idea of the dimension of the phenomenon: 
Mariano di Jacopo called Taccola (1381-1458), Leon Battista 
Alberti (1404-1472), Francesco di Giorgio Martini (1439-1501), 
Leonardo da Vinci, Vannuccio Biringuccio (1480-1539), Fran- 
cesco de’ Marchi (1504-1576), Giovanni Battista Bellucci (1506- 
1554), Daniele Barbaro (1513-1570). Although there were no 
public funding to encourage scientists to devote their efforts to 
the study of technical applications and to the improvement of 
their knowledge, a common ground arose, particularly in Cen- 
tral and Northern Italy. The link between engineers and scien- 
tists emerged, at least in part, through the creation of some 
technical centres in the courts of the principalities which had 
been set up. This was the case of Medici’s court in Florence, 
but also, and perhaps more importantly, the court of Milan un- 
der Francesco Sforza with its very rich library. Particularly in 
Urbino, Francesco di Giorgio Martini (1480-1490) wrote a 
translation of Vitruvius (see book X on machines) into Italian, 
questionable from a philological standpoint and Piero della 
Francesca (1415-1492) one of the greatest mathematicians and 
painters of the time, should be reported (Pisano, 2007, 2009; 
Pisano & Capecchi, 2008, 2009, 2010a, 2010b, 2012). 

Leonardo introduced the concept of pratica (Gille; Sarton) as 

the basis of any of his studies, defining it either as observation, 
a study of buildings, of human anatomy and natural phenomena, 
or as an experiment aimed at checking up the calculations de- 
rived from his observation. On the other hand, he defines him- 
self discepolo della sperienza. To him, from experience we can 
derive, beyond good building practices, also rules that are not 
only the expression of aesthetic research but principally re- 
quirements for the proper performance of the building organism, 
considered at the same time as a living organism or a mac- 
china-ingegno. He is an artist but also a technician and a scho- 
lar and it would be a mistake, assuming a position systemati- 
cally too antithetic to the official thesis, to assimilate his notes 
to a definitive work of art. Then, we must say that an indirect 
continuity in a bend toward science shown by Leonardo emerges 
when considering that the themes he dealt with had already 
been studied in early 1400 by Taccola who was interested in the 
scripts of mechanics and military technology of Pneumatica by 
Philon of Byzantium (280-220 B.C.). As the majority of engi- 
neers by that time, Leonardo also studied the engineering works 
by Heron from Alexandria (fl. I-II? B.C.) though considered 
useless toys (Heron, 1575, 1893, 1900, 1999). On the other 
hand, they got enthusiastic before the futuristic technical de- 
signs by Leonardo in that when not copying it, they were 
strongly influenced by them, such as Hero’s engine, wind- 
wheel, vending machine, force pump, Heron’s fountain et al. 
Gille ends up his book with a hope: 

All our engineers were men of war. [...]. But the enquiry 
remains open: it might bring to light other works still 
languishing in the dust of libraries, it might also provide a 
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more precise analysis of the notebooks which have never 
been published and which are full of information1. 

In spite of because no Greek and Latin knowledge he learnt, 
it is reasonable to think that he had no direct access to classical 
ancient works; on that he wrote interesting annotations in the 
Codex Atlantico and Codex Leicester (ex Codex Hammer). On 
his classical language education he wrote:  

I know very well that because I am unlettered some pre- 
sumptuous people will think they have the right to criti- 
cize me, saying that I am an uncultured man. What unin- 
telligent fools2!  

Introduction  

The privileged geographical position of Italy in the Mediter- 
ranean caused interesting commercial exchanges with Africa 
and the Middle East that favoured the free circulation and the 
widespread of Greek works throughout Italy and Northern 
Europe. On the other hand, when the Turks captured Constan- 
tinople (1453) many Greek scholars moved to Europe (several 
of them to Italy as well), taking with them important manu- 
scripts and making the knowledge of the classical culture more 
accessible, compared with the past 12th and 13th centuries. The 
translation into Latin straight from the Greek language made 
their contents more reliable. Reliability increased thanks to the 
invention of movable type printing (ca. 1450) by Johann 
Gutenberg (1400?-1467?). Approximately, since 1474 they 
started to print works of mathematics, astronomy and astrology 
in Italy. The edition3 (Elementa geometriae) by Giovanni 
Campano di Novara (1220-1296) might have been one of the 
first translations of the Elements by Euclid (fl 300 BC) in its 
Latin version (Knorr, 1978-1979, 1985; Busard, 2005). It in- 
cluded speeches from Arithmetica by Jordanus de Nemore, 
commentary on Euclid by Anaritius (865-922) and several ad- 
ditions by Campano, too. In such a climate and until Renais- 
sance the image of the new scientist, seen also as a student of 
natural phenomena, emerged. He was seen as a new type of 
scientist, re-born and re-qualified, not just an interested and 
clever astrologer and medieval theologian. Above all he looked 
now independent from a hypothetical and general pre-estab- 
lished design. However, the reconcilement between the divine 
plan and the new mathematical truths could converge into an 
outlined project, still divine under many aspects, considering 
God as the engineer who had planned a cosmological design in 
mathematical and geometrical terms. God as an engineer al- 
lowed a certain chance of studying the divine product that is 
nature interpreted in mathematical terms, since in this way the 
object of study was still confined to a religious matter. In fact, 
this would explain why, among other things, the majority of the 
Renaissance scientists were theologians as well (of course not 
usually theologians in the sense of their principal employment) 
who preferred to inquire into nature instead of the Holy Scrip- 
tures. Therefore each discovery or mathematical invention was  
seen as the product of God’s engineering work4. Though this 
new way of conceiving it science was limited to the learned and 

the rich only, since they had a knowledge of Latin and Greek. 
The spread of the new culture by print was hampered by two 
factors. First, a lot of technicians, such as architects and engi- 
neers, would have probably welcomed the application of ge- 
ometry and mathematics as theoretical science to arts, naviga- 
tion and architecture but the precarious diffusion of school 
education did not give the pioneers of scientia activa access to 
the necessary scientific heritage. Thus, according to some 
thought currents of history of mathematics, the expectation 
about the spread of the classical culture, instead of encouraging 
the highest erudition among mathematicians and, in general, of 
scientific topics, paradoxically seemed to exclude just the new- 
born class of scientists-mechanics who, far more numerous than 
theoretical scientists, felt a strong interest in the introduction of 
mechanical devices or of calculating ones within their treatises. 
Secondly, theoretical knowledge was the only one to be con- 
sidered full and definitive, therefore experience was meant to 
be of secondary use, so the discoveries of technicians were 
ignored, eventually causing a strange regression toward the me- 
dieval culture typical of the Scholastics of 12th century. In par- 
ticular, due to the lack of mathematical devices, technicians 
would feed their knowledge through the development of so- 
called procedures by comparison. Modelling by similitude were 
typical, after daily practice and based upon make mistakes and 
correct, almost to represent a sort of a practical, e.g., handbook 
of architecture. The scientific applications will flow into the 
new technology and will require more and more the integration 
of local activities and the managing skill of the artisans. This 
integration and the new reference to the Euclidean geometry 
will bring together with other physical-mathematical factors— 
that will be the case study of the present thesis—to the realiza- 
tion of the first projects, after the aestimatio modelling, that is 
approximated and designed on the spot. 

Mostly, at the end of the Middle Age mathematics was 
taught essentially at universities and at abacus schools. In the 
university, mathematics was taught in the quadrivium (arithme- 
tic, geometry, astronomy and music) of the faculties of arts, that 
while maintaining their autonomy, were instrumental to the 
training of future physicians and theologians (Duhem, 1988: X; 
Grant, 2001; De Ridder-Symoens, 2003; Grendler, 2002). The 
medical faculties of the early Renaissance were usually those in 
which mathematics had more space. Medicine was, in fact, con- 
nected to the study of astrology, which required the students to 
have rudiments of Ptolemaic astronomy and then knowledge of 
elements of geometry and arithmetic. Professors of these sub- 
jects were the masters of liberal arts of the quadrivium, whose 
teaching and research many of the mathematical works of the 
XV century are connected. However the place occupied by 
mathematics was still marginal and also the level of mathe- 
matical knowledge, which except for some teachers was limited 
to what was indispensable for the exercise of astrology. In fact 
it did not cover the study of so many Greek classics that at the 
time were already available in Latin translations from Arabic of 
the XII century.  

During the 16th - 17th centuries mechanics was a theoretical 
science and it was mathematical, although its object had a 
physical nature and had social utility. Texts in the Latin and 
Arabic Middle Ages diverted from the Greek. In particular al- 
Farabi (ca. 870-950) differentiates between mechanics in the 

1Gille, p 240; see also: Hall, 1997. 
2da Vinci, Codex Atlanticus, f. 119v. 
3Maybe made by Abelard of Bath (12th century) and annotated and edited 
by Campano. The edition in fifteen books, Preclarissimus liber elemento-
rum Euclidis perspicacissimi [...] will published by Erhard Ratdolt in Venezia 
(1482). It is based on an Arabic translation from original Greek manuscript.

4Of course one should also take into account Liber naturae (for ex: Num-
bers, 2006; Harrison, 1955; Vanderputten, 2005; Ophuijsen, 2005; Kusukawa,
2012; Jesseph, 2004; Pedersen, 1992; Biagioli, 2003; Marcacci, 2009). 
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science of weights and that in the science of devices. On the 
other hand, the science of weights refers to the movement and 
equilibrium of weights suspended from a balance and aims to 
formulate principles. The science of devices refers to applica- 
tions of mathematics to practical use and to machine construc- 
tion. In the Latin world a process similar to that registered in 
the Arabic world occurred. Even here a science of movement of 
weights was constituted, namely Scientia de ponderibus. Be- 
sides this there was a branch of learning called mechanics, 
sometimes considered an activity of craftsmen, other times of 
engineers (Scientia de ingeniis).  

On the Scientia de Ponderibus 

The scientia de ponderibus saw the birth in the Arabic land 
(Capecchi, 2012, 2011). The status of a distinct Scientia to the 
science of weights first appeared in al-Farabi’s (ca. 870-950) 
Iḥṣā’ al-’ulūm (Enumeration of the sciences). In particular he 
definitely distinguished between science of weights and sci- 
ences of devices or machines. Al-Farabi (Schneider 2011) took 
six distinct sciences: language, logic, mathematics, nature, me- 
taphysics and politics. The mathematics was divided into seven 
topics: arithmetic, geometry, perspective, music, science of 
weights and sciences of machines (Capecchi & Pisano 2013) or 
devices: 

As for the science of weights [emphasis added], it deals 
with the matters of weights from two standpoints: either 
by examining weights as much as they are measured or 
are of use to measure, and this is the investigation of the 
matters of the doctrine of balances (umūr al-qawl fi 
l-mawāzīn), or by examining weights as much as they 
move or are of use to move, and this is the investigation 
of the principles of instruments (uṣūl al-ālāt) by which 
heavy things are lifted and carried from one place to an- 
other.  
As for the science of devices [emphasis added], it is the 
knowledge of the procedures by which one applies to 
natural bodies all that was proven to exist in the mathe- 
matical sciences... in statements and proofs into the natu- 
ral bodies, and [the act at] locating [all that], and estab- 
lishing it in actuality. The sciences of devices are there- 
fore those that supply the knowledge of the methods and 
the procedures by which one can contrive to find this ap- 
plicability and to demonstrate it in actuality in the natural 
bodies that are perceptible to the senses5.  

The Scientia de ponderibus was different from Greek me- 
chanics (Clagett and Moody [1952] 1960); Brown 1967-1968) 
both for the scope-Greek mechanics placed transportation of 
weights, instead of their equilibrium, at the centre—and for the 
methodology—the Scientia de ponderibus charged only of the 
theoretical foundations of equilibrium and not applicative as-
pects (Capecchi & Pisano, 2013; Pisano, 2013). The Scientia de 
ponderibus was also different from the mechanics of the early 
XVI, the centrobaric, a discipline developed in the wake of the 
rediscovery of Archimedes (fl. 287-212 B.C.) which was con- 
cerned mainly with the mathematical problems of determining 

the geometric centres of gravity of plane figures and solids 
(Ivi). 

The new science of weights was characterized by a strong 
deductive system, in which components of qualitative and ideas 
in physics (Locqueneux) were formulated more geometrico. 
The most common historical point of view is that the science of 
weights originated from interplay of Aristotelian physics and 
the physical-mathematical theories of Archimedes and probably 
Euclid (Renn), on the equilibrium of bodies (Archimedes, 2002; 
Clagett, 1964-1984; Tartaglia, 1565a; Dijksterhuis, 1957). 

From a methodological point of view the majority of trea- 
tises in the science of weights followed what is often called 
dynamical or more properly kinematical approach, in which the 
equilibrium is seen as a balance of opposing forces and the 
movement, virtual or real, has an important role. In these treat- 
ments the Aristotelian dichotomy, but not only, between the 
natural and forced, upward and downward, motions, disappears 
for they are considered on the balance, in which the weight is 
also the natural cause of lifting other weights. The geometrical 
approach, like the one carried out by Archimedes, is certainly 
uncommon, so that some historians does not even consider it as 
part of the science of weights. 

In the Latin Middle Ages various treatises on the scientia de 
ponderibus circulated (Clagett 1959), as already mentioned in 
the introduction of this work. Among them, the most important 
are the treatises attributed to Elementa Jordani super demon- 
stratione ponderum (version E), Liber Jordani de ponderibus 
(cum commento) (version (P), Liber Jordani de Nemore de 
ratione ponderis (version R) (Capecchi & Pisano, 2013). They 
were the object of comments up to the 16 century. It is not well 
known the distribution of the original manuscript; what is sure 
is that Liber Jordani de Nemore de ratione ponderis (version 
R) finished in Tartaglia’s hands and was published posthumous 
in 1565 by Curtio Troiano as Iordani opvsculum de ponderosi- 
tate (Tartaglia, 1565b; see also Tartaglia, 1554). 

Generally, when the so-called scientia pratica of the Renais- 
sance is referred to, we are reminded of engineers and, conse- 
quently, of Leonardo da Vinci, the great scholar who sums up a 
multiplicity of competences that nowadays would be consid- 
ered as different crafts: from the engineer, architect, scientist to 
the artist (Pisano, 2007, 2009). Although some studies, such as 
from Pierre Duhem (1861-1916), Roberto Marcolongo (1862- 
1943), Clifford Truesdell (1919-2000) and Bertrand Gille (1920- 
1980) suggest a review of Leonardo da Vinci’s role as a genius, 
in favour of a more human figure of a learned man, endowed 
with a quick intelligence, e.g. not all his designs about ma- 
chines sprang out straight of his vision (Marcolongo, 1932; 
Truesdell; Gille). 

The XV century records a check on the growth in the devel- 
opment of science and the publication of scientific papers. The 
check existed of course for the science of weights, too. In this 
case it also depended on the fact that the discipline, formulated 
axiomatically had reached its complete internal maturity and 
only the proposition of new problems would have lead to an 
evolution. Although until the early years of the XVI century no 
new major scientific treatise was written6, except the Summa de 
arithmetica, geometria, proportioni et proportionalità7 (here- 
after Summa, Pacioli, 1494) and De divina proportione (Pacioli, 
1509) by Luca Pacioli, it must be said that in this period the 

5Othman, 1949: pp. 88-89. Interesting correlated comments are in Abattouy 
2006, p. 12. See also Schneider, 2011; Abattouy, Renn, & Weinig, 2001. In 
the secondary literature one can also see the science of weights proposed as 
science of balances and science of weight lifting: Ibn Sina (980-1037), 
al-Isfizārī (1048-1116), al-Khāzinī (1115-1130). 

6One can also see Questiones super tractatum de ponderibus (Pellicani) by 
Biagio Pellicani of Parma (d. 1416). 
7The Summa was a teaching textbook mainly concerning general algebra. 
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foundations of a major renovation were laid down, with the 
breaking of the spirit of the scholasticism system and the repu- 
diation of the principle of authority, particularly that of Aris- 
totle (384-322 B.C.), the rediscovery of Plato (427-347 B.C.) 
and Pythagoras (570-495 B.C.) and the valorization of mathe- 
matics which was the premise for the new philosophy of nature 
of the second half of the XVI century (Pisano, 2011). 

On Leonardo’s Approach to  
Mechanical Science 

In ancient Greece the term Μηχανική was used when refer- 
ring to machines and devices in general. To be more exact, it 
was intended to mean the study of simple machines (winch, 
lever, pulley, wedge, screw and inclined plane) with reference 
to motive powers and displacements of bodies (Capecchi & 
Pisano, 2008, 2010a, 2010b). Historically works considering 
these arguments were referred to as Mechanics, from Aristotle, 
Heron, Pappus Alexandrinus (290-350 A.C.) to Galileo (1564- 
1642). None of the treatises entitled Mechanics avoided theo- 
retical considerations on its object, particularly on the lever law. 
Moreover, there were treatises which exhausted their role in 
proving this law; important among them are The Euclid book 
on the balance by Euclid and On the Equilibrium of Planes by 
Archimedes (Archimedes, 2002). The Greek conception of me- 
chanics is revived in the Renaissance, with a synthesis of Ar- 
chimedean and Aristotelian routes. This is best represented by 
Mechanicorum liber by Guidobaldo dal Monte (1545-1607) 
who reconsiders Mechanics by Pappus (Pappus, 1588, 1970) 
maintaining that the original purpose was to reduce simple 
machines to the lever (dal Monte, 1581, 1588).  

With the Renaissance in the XV century the medieval ma- 
thematics is joined by the new mathematics, or rather the re- 
discovered ancient Greek mathematics to which the humanist 
movement gave a great contribution. The essential role of Ital- 
ian humanism in the renaissance of mathematics during the XV 
and XVI centuries was well documented in (Rose, 1975). Many 
humanists returned from their travels to Byzantium with codes 
of Apollonius (262-190 A.C.), Ptolemy (90-168 A.C.) Pappus, 
Heron written in Greek. In the early XVI century, within a few 
decades, many revisions and translations of classics were de- 
livered, i.e., including the De expetendis et fugiendis rebus 
(1501) by Giorgio Valla, sort of rich encyclopaedic anthology 
of Greek scientific texts8 where 

[...] the starting point for this renaissance of mathematics 
was the correction of Greek mathematical texts, to be un- 
dertaken by those who were expert in both the Greek lan- 
guage and astronomy. To make the refurbished traditions 
of Greek mathematics available to mathematicians gener- 
ally, Regiomontanus from at least 1461 was engaged on a 
series of Latin translations. But by 1471, this means of 
communication was revolutionised by Regiomontanus’ 
discovery of the new invention of printing. Through print- 
ing, an astonishingly rapid and accurate dissemination of 
texts and translations become possible that had been in- 
conceivable in an age where manuscripts represented the 
sole means of circulating the written word. In its fusion of 
mathematics, Greek and printing Regiomontanus’ pub- 
lishing Programme of 1474 marks the formal beginning of 

the renaissance of mathematics9. 

It should however be said that the reacquisition of mathe- 
matical techniques was rather slow. The humanist thought car- 
ried on meta-mathematical character concerned a new role that 
mathematics acquired within the philosophy of the Platonic and 
Pythagorean instances. On that the role played by Pacioli, 
which was in the same time teacher of abacus and magister 
theologiae, was crucial. This job allowed him to mediate the 
culture of technicians and learned men. Nevertheless the bibli- 
cal metaphysical idea inspiring frà Luca Pacioli in his dedica- 
tory letter “[…] Fratris Luca de Burgo Sancti Sepulcri, ordinis 
minorum, sacre theologiae Magistri [...]” (Pacioli, Summa, f. 3r) 
to Guidobaldo da Montefeltro (1472-1508) as “Ad Illustrissi- 
mum principem sui Ubaldum Duces Montis Feretri, Mathema- 
tice discipline cultorem serventissimum […]” (Ibidem) was that 
the book of nature (later on resumed by Galileo10, too) is writ- 
ten in mathematical characters:  
 

 
Let all create beings be our mirror, as no one will found to be 
constituted but as number, weight and measure, as said by 
Salomon in the second book of the Sapientia11. 

Figure 1.  
Plate from the initial part of the dedicatory letter by Pa- 
cioli (Pacioli, Summa, f. 3r)12. 

9Rose, 1975, p. 110. 
10Galileo, 1890-1909. See also: Galluzzi & Torrini, 1975-1984; Pisano,
2009d; Pisano & Bussotti, 2012; Marcacci, 2009. 
11Pacioli, 1494, Summa, f. 4r. Evidently, he alludes to the biblical text 
around I century BC. 
12Source: Max Planck Institute for the History of science–Echo/Archimedes 
Project [via http://echo.mpiwg-berlin.mpg.de/content/historymechanics/
archimdesecho/archimedes-intro]. 

8De rebus expetendis et fugiendis consisted of 49 books, 30 on sciences. 
Valla’s book also contains interesting notes on Archimedes’ works. 
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It is evident from the large production of the secondary lit- 
erature with respect since his was more the mentality of the 
engineer. Leonardo’s notebooks are not organized and minor 
eloquent13 of the others authors at his time. He was a brilliant 
scholar, very intelligent and a great worker. His questionable 
assumptions on mechanics make known how complex, hard 
and mysterious were the conceptual streams science for its 
early practitioners. Taking into account that modern historiog- 
raphy (Pisano, 2009 and refs) reached the conviction that Leo- 
nardo got his results in part from other sources or that he would 
have written them previously together with other authors, we 
can reasonably make the hypothesis that the abundance of ma- 
terials about his scripts and the lack of it in other cases could 
also be due to greater care when searching the documents of the 
brilliant scholar. Therefore it is difficult to make a hypotheses 
about an artist’s inspiration. In fact, without a proper method of 
historical inquiry it is not so easy to deduce from his manu- 
scripts what one author takes from another and what really 
represents scientific continuity or discontinuity (Pisano, 2009a, 
2009b). 

Leonardo’s mechanics speeches are effetely scattered notes, 
often repeated with slight variations, sometimes with inconsis- 
tencies. Although attempts were made to reach a chronologi- 
cally consistent order, the different scholars have not yet ob- 
tained results sufficiently shared, also because Leonardo had 
the habit of putting his hands to the manuscripts and edit them 
with continuous additions and deletions (Capecchi & Pisano, 
2013). The only valid criterion is the search for the logical con- 
sistency and the persistence of certain statements over others. 
For example: 

 

 
Gravity is an accidental power, which is created by motion and infused into 
bodies out of their natural site14. 
[…] 
Gravity, force and accidental motion (material motion), together with per- 
cussion are the four accidental powers, by which all the evident work of 
mortal beings have their origin and their death15. 

Figure 2.  
Studies on gravity and force16 (da Vinci, Codex Arundel f. 37r). 

Here Leonardo refers to the four powers (with a modern 
language, forces). Regarding the gravity it can be said that 
Leonardo married the Aristotelian thesis considering it as the 
tendency of bodies to reach their natural place17. For Leonardo 
gravity is caused by motion: 

 

 
No element has in itself gravity or levity if it does not move. The earth is in 
contact with the air and water and has in itself neither gravity nor levity; it 
has not stimulus neither from the water nor from the surrounding air, unless 
by accident, which originates by motion. And this teaches us the leaves of 
herbs, born above the earth, which is in contact with the water and the air, 
which do not bend if not for the motion of air or water18.  
[...] 
Gravity be an accident created by the motion of the lower elements into the 
upper19. 

Figure 3.  
Studies on gravity (da Vinci, Codex Arundel f. 205r). 

 
In brief, a body shows its gravity if, following an upheaval of 

the underlying parts, an imbalance of the upper parts is deter- 
mined (Capecchi & Pisano, 2013). More problematic is the 
interpretation of the term force. On the purpose, quite clarifying 
was the following famous quotation, which is interesting from a 
literary point of view also, as a very effective example of scien- 
tific prose, in which studies have suggested the influence of the 
neo-Platonic philosophy of universal animation (Ivi). 

It seems the impetus of scholastic conception (i.e., Oresme, 
Buridanus) which is generated in the bodies by the motion 
transmitted to it by another body, for example by the hand that 
launches a stone. Leonardo distinguishes between natural grav- 
ity and accidental gravity (Capecchi & Pisano 2013). The for- 
mer is the ordinary one and is invariant, the latter is not clearly 
defined or at least is not defined in a unique way. According to 
Duhem (Duhem, 1905-1906: I, pp. 114-115; Duhem, 1906- 
1913), this term was used by the schoolmen as a synonym of 
impetus and Leonardo, following the ideas of Albert of Sax- 
ony (ca. 1316-1390) who assumed the natural gravity concen- 
trated in the centre of gravity, would consider also the acci- 
dental concentrated in a point, named the centre of accidental 
gravity: 

13See, e.g., Martini’s works on machines with several notes Leonardo da 
Vinci’s hand were re-discovered. 
14da Vinci, Codex Arundel f. 37r. See also: da Vinci, 1940: p 31. 
15da Vinci, Codex Forster II, f. 116v. See also: da Vinci, 1940: p 32. 
16The Codex Arundel is a collection (London, British Library) of papers 
written in his characteristic left-handed mirror-writing (reading from right to 
left), including diagrams, drawings and brief texts, covering a broad range 
of topics in science and art, as well as personal notes. It consist of 283 folia
concerning physics-mechanics—and mathematics-optics and Euclidean 
geometry—(Euclid, 1945) architectural and territorial studies (Pedretti, 1998).
Source: London British Library [via http://www.bl.uk/manuscripts]. 

17On that some arguments, sometime forced are in: Duhem, 1905-1906: I, 
pp. 16-17. 
18da Vinci, Codex Arundel, f. 205r. See also: da Vinci, 1940: p 30. 
19Ibidem. 
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Force I say to be a strong spiritual virtue, an in- 
visible power, which is caused by accidental ex- 
ternal violence of motion and placed and infused 
into bodies, which are moved from their natural 
habit [the rest] and bent by giving them active 
life of wonderful power: constrains all created 
things to change form and site, runs with fury to 
her desired death and comes diversifying through 
the causes. Slowness makes her great and quick- 
ness weak, she comes into being from violence 
and dies for freedom and the greater the sooner 
is she consumed. Drives away in a rage what is 
opposed to her decay; she wants winning, to kill 
by her causes any constraints and winning, she 
kills herself. She becomes stronger where she 
finds a stronger contrast. Nothing will move 
without her. The body from which she originates 
does not change form or weight20. 

Figure 4.  
Studies of the equilibrium of weights and of 
impact (“percossa”)21 (da Vinci, Ms. A f. 1v). 

 
Each body has three centres of figure, one of which is a 
natural centre of gravity, the other of the accidental grav- 
ity and the third one of the magnitude22. 

On Leonardo’s Approach to Statics Science  

Leonardo’s contribution to statics (Pisano, 2009a; Capecchi 
& Pisano, 2007) concerns the rule of composition-decomposi- 
tion of a force along two given directions. The problem to be 
solved was to find the tensions of two inclined ropes supporting 
a weight. The forces of the ropes also were associated with 
weights23.  

Leonardo besides to formulate the rule also correctly proved 
it24. The analysis of texts has however led us to believe that in 
this case Marcolongo’s analysis is correct and actually Leo- 

nardo recognized the rule of weight distribution in two ropes 
supporting a weight. There are of course, as typical in Leonardo 
(Pisano, 2009a), situations in which the rule is loosely worded, 
and sometimes wrongly (Capecchi & Pisano, 2013). However, 
although there are no certain dating criteria, the analysis of the 
manuscripts shows a long series of examples with a lot of cor- 
rect arguments that can leave no doubt that Leonardo reached a 
conscious knowledge of the rule of composition of forces. The 
following quotations start from the intuitive finding that the 
weight distribution depends on the obliquity of the ropes. 

On weight. If two ropes converge to support a heavy 
body, one of which is vertical the other oblique, the obli- 
que one does not sustain any part of the weight.  
But if two oblique ropes would support a weight, the 
proportion of weight to weight would be as the obliquity 
to obliquity.  
For ropes that descend with different obliquity from the 
same height, to support a weight, the proportion of the ac- 
cidental weight of the ropes is the same as that of the 
length of these ropes25. 

Here by using the word obliquity, Leonardo rather than to the 
slope refers to the length of the ropes—see the final part of the 
previous quotation—while the accidental weight could be un- 
derstood as the tension of the ropes. The statement is patently 
incorrect, but one could think that Leonardo had confused and 
meant to speak of the inverse ratio of obliquity, which is still 
wrong but at least the tendency is correct. In the following pas- 
sage Leonardo’s is not a typo, because he clearly states that the 
weight is divided into proportion of the angles formed by the 
ropes with the vertical, which is clearly false (Capecchi and 
Pisano 2013): 
 
Let consider two lines concurring in the angle which sustains the weight, if 
you draw the perpendicular which divides this angle, then the weights [ten- 
sions] of the two ropes have the same ratio as that of the two angles gener- 
ated by the above division. If between the two lines ac and ec, which form 
the angle c, from which the weight f is suspended, the perpendicular dc is 
drawn that divides this angle into two angles acd and dfe, we say that these 
ropes will receive the weight in proportion equal to that of the two angles 
they form and equal to the proportion of the two triangles. And the perpen- 
dicular that divides the angle of this triangle will split the gravity suspended 
in two equal parts, because passing through the centre of such gravity26. 
a d e

c

f

a
b

d

c

e

3  
(a)                            (b) 

Figure 5.  
(a) A wrong instance of decomposition of forces27; (b) A correct in- 
stance of decomposition of forces28. 

 
It is reasonable to suppose (Capecchi, 2012; Capecchi & 

Pisano, 2013) that Leonardo might have thought to a weight 
hanging from the middle of a rope in which the greater the 
obliquity—i.e. the angle they form with the vertical—the larger 
the tensions in the rope (Ivi). 

20da Vinci, Ms. A, f. 34v. See also: da Vinci, 1940: pp. 253-254. 
21Source: Istituto e Museo di Storia della Scienza, Firenze, Italy [via 
http://brunelleschi.imss.fi.it]. 
22da Vinci, Codex Atlanticus f. 188v (b). See also: da Vinci, 1940: p. 45. 
23Of course the modern difference between force-weight (vectorial quantity) 
and mass (scalar quantity) is taken into account. 
24This is normally not recognized by historians and even Duhem (who did 
not study the Codex Arundel) suggested only as a possibility that Leonardo 
understood the rule. Marcolongo only asserted with no doubt his priority. 

25da Vinci Ms. E f. 70 r. See also: da Vinci, 1940: p. 142. 
26da Vinci, Ms. E f. 71r. See also: da Vinci, 1940: p. 143. 
27Capecchi & Pisano, 2013. 
28Ibidem. 
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Marcolongo (Marcolongo, 1932) argues, however, that these 
wrong results date back to the years before 1508, when Leo- 
nardo had not yet reached his final idea which is well expressed 
in the passage: 

For the sixth and ninth [propositions], the weight 3 does 
not split into the two real arms of the balance in the same 
proportion of these arms, but in the proportion of the po- 
tential arms29. 

Here Leonardo asserts, without proving it, that the suspended  
weight is supported by tensions b (left) and c (right) having 
inverse ratio to the potential arms ab and ac, i.e.: b:c = a:ab. 
The relation, correctly, allows to find the ratio of tensions in the 
two ropes (Capecchi & Pisano, 2013). 

In other Codex, Leonardo proves the asserted relation and 
also indicates the way to evaluate the absolute value of the 
tension in each rope. He introduces the terms: potential lever 
and potential counter lever (Ivi). The potential lever corre- 
sponds someway to the potential arm, the potential counter 
lever is the horizontal segment connecting one support of a rope 
to the vertical from the suspended weight. The reading of the 
following quotation is useful to illustrate the use of these terms. 
The potential lever associated to the arm fm is fe, the potential 
counter lever is fa. 
 
Here the weight is sustained by two powers, i.e. mf and mb. Now we have to 
find the potential lever and counter lever of the two powers. The lever fe and 
the counter lever fa will correspond to the power mb. The appendix eb is 
added to the lever fe, which is connected with the engine b; and the appen- 
dix ab is added to the counter lever fa, which sustains the weight n. By 
having endowed the balance with the power and the resistance of engine and 
weight, the proportion between the lever fe and the counter lever ab should 
be known. Let fe be 21/22 of the counter lever fa. Then b supports 22 when 
the weight n is 2130. 

 
(a) 

ab

c

e

m

f

n

21

3

22

 
(b) 

Figure 6.  
(a) Studies on levers31 (da Vinci, Codex Arundel f. 7v); (b) Potential 
lever and potential counter leve32. 

Attention is centred on the rope bm with the aim to find its 
tension. A similar argumentation can be repeated for the rope 
fm. Basically Leonardo imagines the rope fm as solidified, i.e. 
as a rigid beam hinged at f. According to his embryonic concept 
of moment of a force, Leonardo asserts the validity of the fol- 
lowing relation: b:n = fa:fe, where b is the tension of the rope 
bm and n is the suspended weight. He gives as an example fa:fe 
= 21:22; for n = 21 it results b = 22. Previous quotation de- 
serves some comments. First: the idea to solidify the rope an- 
ticipates what is commonly named solidification principle, ac- 
cording to which if a body is in equilibrium its state is not per- 
turbed by adding additional constraints33.  

In others folia Leonardo da Vinci’s observations on beams 
concern either the axial and flexional behaviour. For this last 
issue he focused more attention on its buckling. These consid- 
erations are interesting though not always formal and precise 
experimentally. 

Finally, Leonardo is more concerned with deformability than 
strength (Capecchi & Pisano, 2013). The reason could be that 
he refers mainly to the timber used in building-war-machines 
and ships. 
 

Figure 7.  
Studies on beam34 (da Vinci, Co- 
dex Forster II, f. 89v). 

Figure 8.  
Studies of the resistance of arches35 
(da Vinci, Codex Arundel, f. 224r).

 
These beams are very thick and resistant to failure, so they 

are essentially dimensioned for deformation. 

[A] One beam of 6 braccia is stiffer the double in its mid- 
dle, than four equal sized beams of 12 braccia joined to- 
gether36. 

Based on recent researches (Pisano, 2009; Capecchi & Pis- 
ano, 2010, 2013), the previous observation of Leonardo is in 
accordance with modern theory of elasticity of beams: a sup- 
ported beam of constant section, highlighted l by means of a 
concentred force f applied to mezzeria.  

The arrow v is mathematically interpreted by the following 
formula: 

31

48

fl
v

EI
                     (1) 

33This principle has been used to study deformable bodies by many scien-
tists, including Stevin, (Dijksterhuis, 1955), Lagrange, Cauchy, Poinsot, 
Duhem (Capecchi, 2012; Pisano & Capecchi, 2013). 
34Source: Istituto e Museo di Storia della Scienza, Firenze, Italy [via 
http://brunelleschi.imss.fi.it]. 
35Ibidem 
36da Vinci L, Codex Atlanticus, f. 211rb, [p. 562r]. 

29da Vinci, Codex Arundel, f. 1v. See also: da Vinci, 1940: p. 171. 
30da Vinci, Codex Arundel, f. 7v. See also: da Vinci, 1940: p. 179. 
31Source: British Library [via http://www.bl.uk/manuscripts]. 
32Capecchi & Pisano, 2013. 
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where E is the longitudinal modulus and I the moment of inertia 
of the section. From the previous track and considering (1), 
from 6 to 12 arms, that is, doubling the light, the same section 
and force f by formula above the arrow increased 8 times or 
rigidezza (rigidity) decreases 8 times. But 4 of 12 auctions arms 
absorb each 1/4 of the force f to which the arrow of four auc- 
tions together is equal to that of an individual charged with 1/4 
f. The fall of each beam of 12 arms worth 1/4 to 8 times so it is 
only 2 times that of an arm of 6. It is thus the result of Leo- 
nardo in [A]. 

On Leonardo’s Approach to  
Mathematical Science 

Nowadays Leonardo da Vinci’s cultural matrix seems clear. 
Historians agree in considering the Aristotelian physics as the 
main source of his mechanics. According to such studies from 
the analysis of Codex by Leonardo, it was possible to deduce 
some of the titles of the manuscripts37, not entirely scientific, 
used by Leonardo for the researches: Abū Yūsuf Yaʿqūb ibn 
Isḥāq al-Kindī (801-873 A.C.) Libellum sex quantitatum, Gaius 
Plinius Secundus called Pliny the Elder (23-79 A.C.), Naturalis 
Historia, Aristotle38, De phisica and De metheoris, Euclid, De 
ponderibus, De levi et ponderoso fragmentum, John Peckham 
(1225 ca-1292) Perspective ciommunis, Piero de’ Crescenzi 
(1233-1320?) De Agricultura, Mondino de’ Liuzzi (1270-1326) 
Anathomia, Paolo dell’Abaco (1282-1374) Recholuzze del 
maestro Pagolo astrolacho, Leon Battista Alberti (1404-1472) 
De pictura, Cristoforo Landino (1424-1498) Formulario di 
epistole volgari, Francesco di Giorgio Martini (1439-1501) 
Trattato di architettura militare e civile, Giovanni di Mand- 
inilla, Tractato delle più maravigliose cosse e più notabili, 
Luca Pacioli, De divina proportione, and Giorgio Valla (1447- 
1500) De expetendis et fugiendis rebus, etc. Thus, even if Leo- 
nardo da Vinci’s research works concern almost exclusively the 
fields he practiced as a technician, a need of a mathematic- 
cal-geometrical39 abstraction and of rationalization seems to 
emerge; apparently neglected until then by technicians, there 
was an exigency to define technique through observation and 
the mathematical explanation of phenomena. Nonetheless it is 
worth remarking that a consequence of this early form of dis- 
continuity is the fact that Leonardo da Vinci’s method surely 
did not spring out of nowhere. It is rooted in the scientific tradi-
tion of the Aristotelian school, further than in the Archimedean 
one. More specifically, many are the traces of Aristotle’ 
thought to be found in Leonardo, starting with the concept that 
the knowledge of universal things (the furthest from our senses, 
in contrast with the singular things which are the closest to our 
sensible perception) is acquired by means of reasoning based 
on primitive truths that cannot be proved; the latter can be 
known by induction, that is by means of data of the sensible 
perception stored in our memory.  

At the same time, Leonardo draws on Archimedes’ scientia, 

in particular he shares the methodology based on the mathe- 
matical and geometrical study of the equilibrium that is he fol- 
lows the rational criteria that the mathematician from Syracuse 
had set to determine the centres of gravity. Thus the relation- 
ship between Leonardo and the mathematics were influenced 
by many factors, especially his close friendship with Luca Pa- 
cioli. Nevertheless his results were enough immature with re- 
spect to the deep mathematical ideas born by Luca. In the fol- 
lowing attempts by Leonardo to work with fractions before his 
meeting with Luca Pacioli is reported:  
 

 
[Leonardo wrote]  

“sarà 
12

12
 cioè 

1

0
 […]” “ […] 

1 1
1 ,1
12 2

 […]” 

[Then, he correctly transforms in “[…] 
13 7 3

, ,
12 6 2

 […]” 

[Now he sums these 3 fractions and obtains:] 
216

78
 

[Of course the result is wrong. The right one is  
45

12
 that is 

15

4
 

[He confused “12” as denominator. Idem ambiguous 
calculus are possible to read in the Codex L, f. 10v, f. 
21v40 and in the Codex Atlantico, f. 665r (Bagni & 
D’amore, 2007)]. 

Figure 9.  
Rules to calculate fractions (da Vinci, Codex Atlan-
ticus41 f. 191v). 

40The Codex L is part of a set of manuscripts: A, B, C, D, E, F, G, H, I, K, L,
M. They are archived at the Institute of France, Paris (France). They consist 
of twelve manuscripts, some bound in parchment, leather or cardboard. 
They have different sizes, the smaller one is the number M (10 × 7 cm), the 
larger one is C (31.5 × 22 cm). By convention each of them are named by a 
letter of the alphabet, from A to M (omitting J), for a total of 964 folia. The 
topics covers from military art, optics, geometry, hydraulic and flight of 
birds. A probably date might be fl. 1492-1516. Source: Istituto e Museo di 
Storia della Scienza, Firenze, Italy [via http://brunelleschi.imss.fi.it]. 
41The codex is the largest collection of Leonardo’s sheets (end of the six-
teenth century by the sculptor Pompeo Leoni (1531-1608) who dismem-
bered many original notebooks. ca. 1478-1518 and consists of 1119 sheets. 
It is archived in Biblioteca Ambrosiana Milano, Italy and contains studies 
on science and technology, architectural projects, town planning, bio-
graphical records and personal notes. Source: Biblioteca Ambrosiana [via 
http://www.ambrosiana.eu]. 

37Leonardo did not finish his speeches on On the sky (Sul cielo) and On the 
world (Sul mondo) would have to combine the researches of astronomy to 
those of geology. The few notes that there are often appear contradictory: on 
the one hand they show that Leonardo believed the Earth at the center of the 
system, on the other hand sometimes express concern about the motion of 
the Sun. In some passages only the comments around celestial bodies was 
then reduced to issues of lighting, within art and science speculations. 
38See also: Aristotle, 1853, 1949, 1955a, 1955b, 1963, 1984, 1996, 1999; 
Cartelon.  
39An interesting work on geometry during Islam period is Maitte, 2003. 
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On the Scientific Relationship between  
Leonardo and Luca 

By considering the complexity and the huge literature on Pa- 
cioli’s mathematics, before focusing on Pacioli-da Vinci scien-
tific relationship, just few notes on Pacioli’s arithmetical ap- 
proach are reported.  

The theory of proportions42 plays a central role in the project 
of mathematization of knowledge proposed by Pacioli. It is 
interesting to remark the fifth43 book of Euclid’s Elements. It 
derived and commented by second part of the VI Distinction in 
the Summa de arithmetica, geometria, proportioni et proporzi- 
onalità (1494) where Pacioli claims his definitions of propor- 
tionality44.  

If you well study, in all arts, you will found the proportion 
as the mother and queen of all of them, and without it you 
cannot exertion45.  

 

 

Figure 10.  
Plate from Summa by Pacioli (Pacioli, Summa, f. 1r)46. 

 

Figure 11.  
Mathematical arguing in Pacioli’s Summa (Pacioli, Summa, f. 
34r)47. 

 

 42Since the literature on Pacioli is very large, some examples and maybe 
more adequate arguments are reported only. 
43In vulgare text by Federico Commandino (1509-1575) the definitions are: 
“[V, Def. 5] Magnitudes are said to be in the same ratio, the first to the 
second and the third to the fourth, when, if any equimultiples whatever are 
taken of the first and third, and any equimultiples whatever of the second 
and fourth, the former equimultiples alike exceed, are alike equal to, or alike 
fall short of, the latter equimultiples respectively taken in corresponding 
order […]. [V, Def. 6] Let magnitudes which have the same ratio be called 
proportional.” (Commandino, 1575, Defs. 5-6; see also Commandino, 1565). 
44“Dico con Euclide in quinto proportionalità in communi ene solo similitu-
dine de più proportioni e al manco de doi” (Pacioli, Summa, 72v).  
45Pacioli, Summa, 78v. 
46Source: Max Planck Institute for the History of science– Echo/Archimedes 
Project [via  
http://echo.mpiwg-berlin.mpg.de/content/historymechanics/archimdesecho/
archimedes-intro]. 

In a modern formalism. Given four proportional quantities  
x:y = z:w 

being m equimultiple of the first and third, and being n 
equimultiple for the second and fourth, one obtain: 

ma = ny and mz < nw 
ma > ny and mz = nw 
ma > ny and mz < nw 

ma > ny and mz > nw with mx/ny > mz/nw 
ma < ny and mz < nw with mx/ny < mz/nw 

Figure 12.  
Mathematical arguing in Pacioli’s Summa (Pacioli, Summa, 
f. 34v)48.  

47Source: Ibidem. 
48Ibidem.
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Ninth effect for seeking a number without fraction [rotto]:  
[In modern language, given x, by using Fibonacci, we can 
calculate:] [...] 

3
3

2
9 4

x
x

  

Figure 13.  
On the fractions (Pacioli, Viribus, 20v, 21r)49. 

 

 
XXXIIII effect to finish whatever number is before the 
company, not taking more than a limiting number. [...] 
[For example two persons must reach 30 by summing al- 
ternatively numbers between 1 and 6. The one who 
reaches 30 wins. The artifice consists in making choice of 
the numbers 2, 9, 16, 23. Indeed, if I reach 23, as my op- 
ponent can only add a number between 1 and 6, he will 
reach at most 29 and I just have to add 1 to win. We find 
the other safe numbers with backward reasoning]. 

Figure 14. 
On the recreational maths games (Pacioli, Viribus, 
73v-74r)50. 

With concern Leonardo, he wrote down earlier meeting with 
Pacioli, transcripts of his handful of whole passages of the 
Summa. On 10th November 1494, in Venice, finally released in 
print in Latin, Luca Pacioli’s Summa arithmetic, geometry, 
proportions et proportionality. Luca inspired Leonardo, and he 
was counselor, teacher and translator. Leonardo bought Summa 
(119 soldi) as he claimed (da Vinci, Codex Atlanticus, f. 288r f. 
104r, f. 331 r) and notes: “Learn multiplication of the roots by 
master Luca” (da Vinci, Codice Atlanticus, f. 331r [120r]). 
Thus, from 1496 to 1504 Leonardo studied Luca Pacioli’s 
works and summarizes his theory of proportions (da Vinci, 
Codex Madrid, 8936). Based on that, he expressed his interest 
in geometry expressing both in the drawings for De divina 
proportione ([1496-98] 1509), that for his readings on Euclid 
(clearly only for first 6 books and part of the tenth. Leonardo 
faced the problem of irrational numbers, the ratio between 
incommensurable segments, side and diagonal of the square, 
the radius and the circumference and the problem of the so- 
called deaf roots (radici sorde).  

Thus, after his meeting (1496) with Luca, Leonardo was 
busy in geometry and mechanics adopting new mathematical 
and geometrical assumptions forwarded by Maestro Luca. In 
the following examples on geometrical and mechanical prob- 
lems are reported: 

 

 

Figure 15.  
Stereometric studies after Leonardo and Luca meeting51 
(da Vinci, Codex Forster I, f. 19r). 

 
Particularly geometrical figures were presented for the first 

time in the Codex Forster52 and finally included De divina 
proportione (1498) are evident examples. 

51Source: Istituto e Museo di Storia della Scienza, Firenze, Italy [via  
http://brunelleschi.imss.fi.it]. 
52This Codex Forster is composed of two manuscripts totalling 159 leaves. 
The Ms. I (1497) presents studies of mechanics, ornamental knots and plaits 
and of architecture. The Ms II (1495) records Leonardo’s research in phys-
ics and mechanics (force, gravity, weight and movement). Particularly the 
Codex Forster I from f. 14r to f. 22r includes speeches on Summa’s theory.

49Source: Biblioteca Universitaria di Bologna [via 
http://www.uriland.it/matematica/DeViribus]. 
50Ibidem. 
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Generally speaking, Leonardo tried to develop a process of 
theoretical and experimental research (Rogers) that starts from 
tasks and requirements of a practical nature and then develops 
theoretical considerations, compared with the classical and 
medieval primary sources of scientific knowledge, to be veri- 
fied experimentally, in order to build up general mathematical 
rules applicable to specific cases. Particularly he used prag- 
matic and realistic approach to the mathematical problems. 
Leonardo does not seek absolute rigour in the results of his 
research, but an approximation recognized as useful, clearly an 
attempt to rationalize all human activities, including his own 
(Pisano, 2009; Pisano & Rougetet, 2013).  

With Leonardo, it very often recurs, perhaps for the first time, 
the idea of an absolutely efficient building-machine (Pedretti, 
1978, 1999). Within it daily activities are made rational and 
mechanic: e.g. a fireplace automatically operated, a laundry, the 
model of a stable. The building is conceived as a living organ- 
ism but, at the same time, in a sense, taking Vitruvio’ concepts 
to the extreme, he suggests also the way round. In other words, 
living organisms too—men and animals—are turned into ma- 
chines. In this sense, he detects in any organism, living or not, a 
unity of process and function based on movement and considers 
animals as a human body and buildings as a whole of mechani- 
cal devices, that he calls elementi macchinali (machineries) 
Bird is a device performing after a mathematical law and na- 
ture cannot make animals move without mechanical devices 
Leonardo da Vinci’s considerations around such mechanical 
elements and his studies of anatomy are really interesting, 
proving study and performance methods very similar. This uni- 
formity of treatment emerges in his drawings as well, either 
anatomic, where bones and muscles are handled as geometrical 
schemes of ingegni53, or of machines and tools, in which rele- 
vant specific elements insist, such as the cannons-columns54 
that seem to claim the universality of the planning project. Thus, 
it is evident that the studies by Leonardo represent an important 
and partly correct attempt to formulate a general theoretical 
organization involving greater formalization—than his prede- 
cessors—which can clear up and preview, e.g. the deform- 
ability of bodies in mechanics and architecture. One of his aims 
was to avoid further planning mistakes to ensure the proper 
functioning of the building-human organism and of the build- 
ing-machine55.  

Unlike Leonardo, Luca implemented an artimetization of the 
theory of proportions (Pacioli’s Summa, 77-78rv) which is 
based on the Book V, and above based on the Book VII (the first 
of the three arithmetic books of the Elements) that provided to 
use the proportions in practical scope of the calculation, and 
using the concept of denominator. The subject of the propor- 
tions is the core of the scientific program of mathematization 
pursued by Luca. The latter adopted a practice to use ratio by 
the denominators, since he frequently adopted Euclidean defi-

nitions of in the seventh book of the Elements, equivalently of 
practice use adopted at that time by non mathematicians, that is 
by philosophers. At that stage he uses which the selected list of 
names as presented in the Arbor proportionis. 
 

 

Figure 16.  
The Arbor proportionis et proportionalitatis by Pacioli 
(Pacioli, Summa, f. 82r). 

 

 53da Vinci, Codex Windsor, RL 12656; see also f. 17r. 
54da Vinci, Codex Atlanticus, f. 28v. 
55In this way he is remote from his contemporaries. Later, toward the end of 
the Renaissance this new way to decide the theory that assumed a particular 
cultural value mainly proceeding towards an analytical perspective of con-
ceiving mechanics that seemed to be coming to a crossroads: physical or 
mathematical science? That way another historiographic problem emerges 
(Pisano, 2009; Pisano & Gaudiello, 2009): a crucial continuity-discontinu-
ity problem appears when a theory is included in another theory, e.g. 
mathematics in mechanics (rational mechanics), astronomy in mechanics 
(celestial mechanics) mathematics in thermodynamics (analytical theory of 
heat), mechanics in engineering (structural mechanics). 

Figure 17.  
The Arbor proportionis et proportionalitatis by Leonardo 
(adapted by Pacioli’s Arbor) (da Vinci, Codex Madrid, 
Ms. II, f. 78r)56. 

56The Codex Madrid is a recent Codex rediscovered in 1966 consists of 157 
folia concerning Leonardo’s activity in Firenze on plans for military archi-
tecture carried out (Piombino), maps of the Tuscan region, notes on painting 
and studies of optics. A final booklet, arbitrarily attached to the manuscript, 
contains Leonardo’s studies (1491-1493) for the casting of the equestrian 
monument to Francesco Sforza.
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Leonardo is interested in Pacioli’s works and reported it his 
three codes (da Vinci, Madrid II, Forster II (1˚); Id., Ms. K. The 
Codex Madrid II (da Vinci, Codex Madrid II, Ms. 8936), con- 
tains from folio 46v to folio 50r, a summary of the Sixth dis- 
tinction of the Pacioli’s Summa, dedicated to the proportions 
and proportionality. In fact, the Codex Forster II (1˚), by folio 
14r to folio 22r contains notes on the theory of proportions that 
lead back to the Summa. Finally in the Ms. K (da Vinci, Ms. K), 
dotted by numerous references to the propositions of Euclid’s 
Elements (Book V), one can read: 

The proportion is not only to be found in numbers and 
measures, but also in sounds, weights, intervals of time, 
and in every active force in existence57. 

The sentences belongs to Summa by Pacioli (Pacioli, Summa, 
f. 69r) which in turn, he belongs to the comment by Campano 
adapted for his Euclidean work (Pacioli, Euclidis, f. 32rv-33r). 
With regard to the geometry, Leonardo was interested in con-
struction of regular polygons with ruler and compass, rather 
that problems of constructing a square sum of two data. On can 
see, e.g., the problem by dividing the circumference in 3, 4, 5, 6, 
7, 8 equal parts up to the maximum of 48 sides (da Vinci Codex 
Atlanticus, f. 11v). The speech are randomly distributed in the 
manuscripts where few precise explanations are proposed by 
Leonardo only adding by ragione (reasoning, a sort of proof). 
In effect they are not really proofs, rather they are fast explana- 
tions (da Vinci, Codex Forster III, fs. 68v-69r).  

Final Remarks 

Finally, Leonardo met Luca in Milan (1496). The friendship 
and mutual respect between the two are very strong as Pacioli 
wrote in the first pages of De divina proportione around a sci- 
entific challenge (duello scientifico) that took place at the court 
of Ludovico il Moro on the February 9, 1498, (clergy, theolo- 
gians, doctors, engineers and inventors of new things and Leo- 
nardo shared it). Leonardo learnt concepts, methods, proofs and 
avversaria for the statement to refute (inimica). The geometry 
of Leonardo is therefore more cultured, and obtained by Pacioli 
(and indirectly by Euclid). In particular, golden section pre- 
sented to him by Luca, who calls it Divine proportione.  

Very known are the drawings of Leonardo in the divine pro- 
portion by Luca so I avoided to be reported.  
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