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ABSTRACT 

We investigate the spatial extent of a statistically highly significant shift in atmospheric temperatures over Europe 
around 1987-1988 using a boot-strap change point algorithm. According to this algorithm, this change point (average 
warming of about one degree Celsius) is statistically highly significant (p > 99.9999%). The change point is consistently 
present in satellite and surface temperature measurements as well as temperature re-analyses and ocean heat content 
over most of Western Europe. We also find a connection with parts of the North Atlantic Ocean and eastern Asia. Al- 
though the time of change coincides with the North Atlantic Oscillation (NAO) going from negative to positive, the 
consistent warmer temperatures throughout the decades after 1987-1988 do not coincide with a persistent shift of the 
NAO, as it returns to a neutral/negative in the 1990’s. Furthermore, the shift does not coincide with any other known 
mode of multidecadal internal climate variability. We argue that the notion of a shift is “spurious”, i.e. the result of a 
fast change in Europe from dimming to brightening combined with an accidental sequence of cold (negative NAO) and 
warm (positive) NAO years during this period. The “shift” could therefore be considered as a fingerprint of European 
brightening during the last few decades. 
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1. Introduction 

In recent decades Western Europe has been warming sig- 
nificantly faster than the world as a whole [1]. No gener- 
ally accepted explanation for this faster increase in tem- 
peratures has been reported, although a decrease in aero- 
sols due to improved air quality as well as circulation 
changes have been suggested as possible explanations 
[1-6]. 

However, a case can be made that this warming has 
not occurred gradually but it’s rather abrupt in the late 
1980’s. We denote this idea as the “European Climate 
Shift” or ECS. This shift has been reported for local mea- 
surements around the Baltic area [6-8], but its spatial ex- 
tent has remained unexplored. To illustrate where this 
idea of an ECS stems from, we present the Central Neth- 
erlands Temperature (CNT) record [9]. This homogene- 
ous time series from 1906 onwards is representative for 
temperatures of a larger area in and around the Nether- 
lands and is specifically constructed to study large-scale 
temperature changes. The reconstruction accounts for va- 

rious effects, including changes in measurement method, 
measurement location and urbanization. 

Figure 1(a) shows the CNT temperature record since 
1906. Clearly there has been an increase in annual mean 
temperatures from about 1980 onwards. The temperature 
trend since 1980 has been 0.42 ± 0.26 K/decade (2σ un- 
certainty), using an ordinary linear regression. The tim- 
ing of the temperature increase is consistent with the ob- 
served global mean temperature increase, but the magni- 
tude of the warming is much larger than the global mean 
temperature change over that period [1]. However, even 
by visual inspection a case could be made that the tem- 
perature increase since 1980 is not gradual, but is domi- 
nated by a temperature shift around 1987-1988. When 
calculating trends before and after 1987, we found that 
the temperature trend from 1906 to 1987 has been 0.04 ± 
0.06 K/decade, whereas the trend after 1987 has been 
0.15 ± 0.37 K/decade. The change in average tempera- 
ture before and after 1987 is 1.11 K. When investigating 
the residual temperatures after removing the trends, there 
is no clear difference in statistical properties of the re- 
siduals and it thus cannot be decided based on this statis- *Corresponding author. 
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tic which model is better: a linear trend or a shift plus a 
linear trend. Hence, the possibility of a climate shift 
around 1987-1988 remains. 

Climate change is generally defined within the frame- 
work of statistics. IPCC [10] provides a useful definition 
of “climate change”: “a change in the state of the climate 
that can be identified (e.g., by using statistical tests) by 
changes in the mean and/or the variability of its proper- 
ties and that persists for an extended period, typically 
decades or longer.” It is thus important to investigate the 
possibility of a shift by independent statistical means. In 
this study we use a well-established change point analy-  
 

 

Figure 1. (a) Central Netherlands temperature anomaly 
with regard to the mean temperature from 1906-2011. The 
black line indicates the ordinary linear regressions before 
and after 1980, the red line indicates the same regression 
but before and after 1987. The colored points indicate pe- 
riods of at least three consecutive years when temperatures 
for all years were smaller (blue) or larger (red) than half 
the root-mean-square value of temperature variability be- 
tween 1906 and 1984. (b) Temperature anomalies with re- 
spect to the 1979-2010 mean for seven gridded temperature 
datasets for the Netherlands grid point for the period 
1975-2011, as well as the Central Netherlands Temperature 
(black). 

sis (CPA) algorithm for the identification of change po- 
ints. The CPA algorithm used in this study also provides 
confidence intervals based on the bootstrap. We first sub- 
ject the CNT record to the CPA algorithm to see if a shift 
can be identified. We then analyze temperature series 
over the Netherlands from other data sources using the 
same methodology for consistency. We extend the analy- 
sis to the European domain and end with an analysis of 
global patterns to investigate the geographical extent of 
the ECS, and end with a discussion of possible causes. 
For all analyses performed and datasets used, we use an- 
nual mean temperatures. 

2. Methods and Data 

2.1. Change-Point Analysis 

For the detection of shifts in time series we use the 
change-point analysis (CPA) procedure [11,12]. The CPA 
algorithm is a non-parametric change point detection 
technique, which means that it does not presume certain 
statistical properties of the data to be analyzed. A boot- 
strap procedure is applied to estimate significance levels 
[13]. Change point analysis techniques are commonly 
used in climate research [14]. The basis of the CPA is the 
cumulative sum method (CUSUM). The cumulative sum 
is defined as: 

year year-1 anomaly,yearS S T= +  

In which Syear denotes the cumulative sum for a given 
year and Tanomaly,year is the temperature anomaly for a 
given year with respect to the average of the entire tem- 
perature time series. By definition, the cumulative sum at 
time step zero (S0) is set at zero. The changes of cumula- 
tive sum can be used to determine changes by identifying 
points where the cumulative sum changes direction. 

An important aspect of the identification of a change 
point is to determine their statistical significance. How 
can we be sure that a change did not occur by chance? 
Within the CPA method, statistical significance levels 
can be determined by using a bootstrap method. First, an 
estimator of the magnitude of the change is required. For 
this we use the difference between the minimum and ma- 
ximum value of the cumulative sum (S). 
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Smax and Smin are the maximum and minimum values of 
the cumulative sum during the period under considera- 
tion. We then generate a bootstrap sample of the length 
of the record by randomly reordering the original record 
(“sampling without replacement”). This bootstrapped 
series is then subjected to the CUSUM method again, 
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providing a bootstrapped cumulative sum difference 
( ). The idea is that “the bootstrap sample repre- 
sents random re-orderings of the data as if no change has 
occurred”. By performing a large number of such boot- 
straps one gets an estimate of the range of Sdiff values as 
if no change would have occurred. With the large num- 
ber of realizations a confidence interval can be defined, 
i.e. the number of bootstrapped  values larger 
than the Sdiff represents the chance that the change may 
have occurred by chance. One particular advantage of a 
bootstrapping method is that measurement errors are im- 
plicitly taken into account: variations in a parameter re- 
lated to measurement errors are included in the confi- 
dence estimates as the original data is continually re- 
sampled in the bootstrap method. A disadvantage of the 
bootstrap is that it is a computationally expensive method: 
the typical number of bootstraps that is required is 1000 
for a given time series and this limitation to 1000 is be- 
cause of practical reasons. Analyzing multiple datasets 
would otherwise consume too much time. For example, 
the calculation of the 5 million resamplings as reported in 
this study took more than one day of computation on a 
common desktop computer. The confidence intervals thus 
have their own uncertainties, but using 1000 bootstraps is 
a generally accepted procedure. 

Bootstrap
diffS

Bootstrap
diffS

Once the CPA method has been applied to the time se- 
ries, it is split at the change point into two separate time 
series. For both time series the CPA analysis is repeated 
again, and so forth until certain criteria are met. In this 
paper, the criteria we use are the following: 

1) The confidence interval must be larger than 95% for 
positive change point detection. 

In general it is assumed that a confidence interval 
smaller than 95% (two standard errors in case of a Gaus- 
sian distribution) indicates that the change cannot be con- 
sidered different from having occurred by chance. This 
does not mean that any change with a confidence interval 
larger than 95% means that a change did occur, but it is a 
first filter. 

2) Time series analyzed for change points contain at 
least 10 years of data. 

The latter is motivated by the notion that we are inter- 
ested in decadal changes in climate and temperatures (see 
the definition of climate change in the introduction). 
Climate variations on shorter time scales are thus filtered 
out. 

2.2. Datasets 

All datasets used in this study were obtained from the 
KNMI Climate Explorer database (http://climexp.knmi.nl). 
We use the Central Netherlands Temperature record, one 
of the best documented long term temperature records 
available [9]. We further use the lower tropospheric sat- 
ellite temperature records from the Microwave Sounding 

Unit (MSU) satellites from both the University of Ala- 
bama/Huntsville (UAH, v5.4 [15]) and Remote Sensing 
Systems (RSS, v3.3 [16]), which is available from 1979 
onwards. In addition, we also use the National Center for 
Environmental Protection (NCEP) R1 reanalysis [17] 500 
hPa and 2-meter temperature data which starts in 1948. 
We further use European Center for Medium Weather 
Forecast interim reanalysis (ERA INTERIM [18]) which 
starts also in 1979. We also use the combined CRU- 
TEM3 and HADSST2 surface temperature product avail- 
able at the KNMI climate explorer, both from the Hadley 
Center in the United Kingdom [19-22], and we use the 
National Oceanic and Atmospheric Administration (NO- 
AA) PSD Twentieth Century Analysis dataset [23-25]. 
These last two datasets are the longest available gridded 
datasets, going back to 1850 and 1870, respectively. For 
analysis purposes, we also include Ocean Heat Content 
(OHC) data from the National Oceanic Data Center [26], 
which starts in 1955. A summary of the characteristics of 
all datasets is given in Table 1. 

3. The Central Netherlands Temperature 

As outlined earlier, this research was motivated by the 
visual inspection of temperature records in the Nether- 
lands, which showed warming after about 1980. For il- 
lustration purposes, the data was separated into two parts 
—before and after 1980 (black) or 1988 (red)—and fitted 
with an Ordinary Linear Regression (OLR). The mean 
temperature anomalies before and after 1987 are −0.23 
and 0.84 K, respectively, resulting in a mean temperature 
difference of 1.1 K. 

Although we could make a case that a shift occurs 
around 1987, from this visualization we can see that it is 
difficult to determine which model (linear + linear or 
linear + shift + linear) is better. The root-mean-square 
(RMS) of the residuals for the entire interval after sub-  
 
Table 1. Datasets used in this study, record length and 
horizontal resolution. 

Dataset Period Resolution 

Central Netherlands Temperature  
record (CNT) 

1906-2011 - 

MSU RSS TLT 1979-2011 2.5˚ × 2.5˚ 

MSU UAH TLT 1979-2011 2.5˚ × 2.5˚ 

HADCRU T2m 1850-2011 5˚ × 5˚ 

ERAINT T2m 1979-2011 0.70˚ × 0.69˚

NCEP R1 T2m 1948-2011 1.875˚ × 1.89˚

NCEP R1 T500hPa 1948-2011 1.875˚ × 1.89˚

NOAA PSD TCA T2m 1870-2011 1.875˚ × 1.89˚

NODC OHC 1955-2011 1˚ × 1˚ 
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traction of both fits is similar (0.6 K in both cases), so by 
this means it is not possible to determine which fit is 
better. The uncertainty intervals of the regressions sug- 
gest that only the linear trend after 1980 is significant. 
However, according to the CPA analysis of the CNT 
temperature a change occurred in 1988 with a statistical 
significance of 100%, even when we increased the num- 
ber of bootstraps to 5,000,000, which would make its sig- 
nificance > 99.9999%. Thus, according to the CPA the 
possibility of a shift around 1987-1988 is very real and 
cannot be excluded from a statistical point of view, with 
—according to the linear regressions—no statistically 
significant trends before and after 1987. Note that the 
CPA analysis did not detect any other change point in the 
CNT series with a significance level larger than 95%.  

This result leads to several questions: did this shift oc- 
cur in other European regions and if so, what was its spa- 
tial extent. And was this shift merely seen at the surface 
or also aloft?  

To answer these questions, we applied the CPA to a 
range of temperature records representative for the loca- 
tion of the Netherlands obtained from gridded surface 
temperature reconstructions (HADCRU), to reanalysis 
data (ERA INTERIM, NCEP, NOAA) and satellite data 
(MSU from UAH and RSS. Figure 1(b) shows the time 
series of all datasets mentioned above for the grid box 
closest to the CNT location. The statistics of the CPA are 
summarized in Table 2. All datasets clearly identify a 
change in 1987 or 1988 at the CNT location with high 
confidence (significance levels vary between 99.1 and 
100%), which is not surprising given the correspondence 
between the temperature anomalies during the period  

1979-2010. We thus conclude that the possible 1987- 
1988 European Climate Shift is a robust feature in the 
various datasets. 

Before continuing with the analysis of spatial patterns 
of change points, a few remarks are in place with regard 
to the CPA methodology. First of all, confidence inter- 
vals to some extent depend on the length of the record. 
For example, the confidence level of the ECS is 100% 
for the full 1906-2011 CNT record. However, taking only 
the period 1979-2011, a shift is still detected in 1987 but 
with a confidence level of “only” 98.5%. The reduced 
confidence level is related to the fact that for the longer 
period the algorithm has a better estimate of what the 
undisturbed variability of the temperature record is. Fur- 
thermore, the confidence levels themselves are subject to 
some uncertainty. Taking a larger bootstrap sample of 
10,000 rather than 1000 for the CNT series from 1979- 
2011 leads to a confidence level of 98.3%, rather than the 
98.5% for the 1000 bootstraps. These results indicate that 
some care has to be taken with the interpretation of sig- 
nificance levels. 

4. Regional and Global Change Point  
Patterns 

Given the presence of a change point in the various tem- 
perature records for the Netherlands, the next question is 
what the spatial extent of this change is. Figure 2 shows 
the locations around Europe where a change point was 
identified in various datasets for 1987 or 1988 and where 
confidence intervals are larger than 95%. There is a clear 
agreement among all datasets that the temperature 
change around 1987-1988 is not a localized but rather a  

 
Table 2. Statistics of the 1987-1998 European Climate Shift as derived from the CUSUM algorithm. Indicated are the dataset, 
temperature altitude, record length, break year, confidence interval (CI) based on a 1000 member bootstrap (“without re- 
placement”), temperature difference between the periods before and after the change (ΔT) and the geographical location of 
the dataset grid point closest to the Netherlands, in degrees East and North. 

Dataset Temperature Period Break CI ΔT Lon Lat 

CNT 2 meter 1906-2011 1987 100 1.11 - - 

MSU RSS TLT* 
Lower troposphere 

(~0 - 8 km) 
1979-2011 

1988 
1988 

99.7 
99.7 

0.75 
0.82 

3.75 
6.25 

51.25 
51.25 

MSU UAH TLT* 
Lower troposphere 

(~0 - 8 km) 
1979-2011 

1988 
1988 

99.3 
99.1 

0.99 
1.01 

3.75 
6.25 

51.25 
51.25 

HADCRU T2m** 2 meter 1850-2011 
1987 
1987 

100 
100 

1.11 
1.03 

2.5 
7.5 

52.50 
52.50 

ERAINT T2m 2 meter 1979-2011 1987 99.3 1.03 5.625 52.28 

NCEP R1 T2m 2 meter 1948-2011 1987 99.8 0.84 5.625 52.38 

NCEP R1 T500hPa 500 hPa 1948-2011 1987 100 0.81 5.000 52.50 

NOAA PSD TCA T2m 2 meter 1870-2011 1987 100 0.98 5.625 52.38 

*Statistics for adjacent MSU RSS/UAH point. Due to the MSU 2.5˚ × 2.5˚ grid size the Central Netherlands Location more or less falls in between two MSU 
grids. **CPA statistics for adjacent HADCRU point. Due to the HADCRU 5˚ × 5˚ grid size the Central Netherlands Location more or less falls in between two 
HADCRU grids. 
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Figure 2. Spatial patterns of the statistical significance of the 1987-1988 ECS for the European domain. Only points with a 
significance larger than 95% are shown. 
 
regional phenomenon, even visible in Ocean Heat Con- 
tent data. The area of change stretches between the 
United Kingdom to central Europe and from the Alps and 
Pyrenees to southern Scandinavia, but depending on the 
dataset may include the Baltic area and northern Scandi- 
navia, the northern Atlantic towards Iceland as well as 
the Iberian Peninsula and the western Mediterranean. 
Confidence levels are all highly significant, for most of 

the areas larger than 99%. 
The presence of this robust and persistent area of 

change begs another question: are there other areas out- 
side of Europe that also show a change point around 
1987-1988. Figure 3 shows the global pattern of change 
points around 1987-1988 and with a confidence interval 
larger than 95%. Globally, we now see quite different 
patial patterns among the various datasets. Both satellite  s 
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Figure 3. As Figure 2 but globally. 
 
datasets (A,B) show only a few areas where a change is 
identified. Apart from Europe a change is identified over 
a large area in eastern Asia and western Pacific as well as 
some areas over the northern Atlantic Ocean around 
30˚N. The latter is statistically less significant and the 
two satellite datasets are not in agreement on this. The 
other datasets agree on the European and East Asia 
change, but show much more scatter and some spatially 

coherent patterns not seen in the satellite data. The NCEP 
500 hPa reanalysis data (C) shows changes in the sub- 
tropical Southern Hemisphere, in particular over Austra- 
lia, and over Antarctica. The ECMWF ERA interim data 
(D) shows quite some additional “small scale scatter”. 
HADCRU (E) also shows quite some “scatter”. The 
NCEP reanalysis surface data (F) shows large scale 
changes in the Arctic as well as over equatorial Africa 
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and over Antarctic. The NOAA TCA data (G) shows 
large signals in the Tropics and the Arctic, as well as 
smaller signals around the globe. The OHC (H), finally, 
also shows a strong Arctic signal and quite some scatter. 

Given that the satellite data is—from a spatial point of 
view—the only record made with the same instrument, 
one interpretation of these findings is that all other re- 
cords, either reconstructions or reanalysis data, suffer 
from inhomogeneities that contaminate long term records. 
On the other hand, all datasets agree on a Western Eu- 
rope and an East Asia change, suggesting that both are 
real in a physical sense. 

5. Discussion 

The most important finding of our analysis is that a clear 
case can be made for a European Climate Shift around 
1987-1988. All datasets analyzed here consistently show 
a change in mean temperature over Western Europe be- 
fore and after 1987-1988, although the spatial extent of 
this shift varies among the various datasets. There also 
exists an apparent teleconnection with eastern Asia and 
the western Pacific, where also a shift is identified during 
this period.  

An obvious legitimate question is what is causing the 
ECS and if there is a physical one at all. Variations in the 
NAO do not appear to have contributed much to recent 
warming in Europe [2] and the NAO is more important 
for high frequency (interannual) variability than for low 
frequency (decadal) variability [27]. 

Figure 4 shows the time series of three different NAO 
indices for the periods 1900-now and 1975-now. The one 
feature standing out is the high positive NAO indices in 
the late 1980’s and early 1990s, following a number of 
years in the mid 1980’s with of negative NAO values. It 
is well established that the winters of 1984/1985, 1985/ 
1986 and 1986/1987 were cold in Western Europe which 
led to relatively low annual mean temperatures whereas 
the years after that (1988-1990) were all quite warm and 
that these temperature anomalies are related to variations 
in circulation patterns and thus the NAO [27]. On the 
other hand, the NAO index drops to more normal values 
during the 1990’s and thereafter, whereas the positive 
temperature anomaly remains. Furthermore, no changes 
in other modes of multidecadal internal climate variabil- 
ity like the Atlantic Multidecadal Oscillation (AMO), the 
Arctic Oscillation (AO), the Pacific Decadal Oscillation 
(PDO) and El Nino—Southern Oscillation (ENSO) have 
been reported around 1987-1988 [28,29]. Given that there 
has been a general upward trend in temperatures—pos- 
sibly enhanced by strong reductions in aerosols over Eu- 
rope, the so-called “brightening” [30]—it is likely that 
the accidental sequence of a few cold years followed by a 
few warm years under conditions of brightening results 
in a temperature sequence that in a statistical analysis is 

identified as a change point. This is consistent with the 
notion that NAO predominantly influences high fre- 
quency temperature variations, not long-term tempera- 
ture variations [27]. Combined with the well established 
turnaround from “dimming” to “brightening” in the mid- 
1980’s [27], we argue that the shift could actually be 
considered a fingerprint of European “brightening”. The 
detection of this climate shift should be viewed as a 
“spurious” result, i.e. not as a true physical shift in cli- 
mate, despite its very high statistical significance (at least 
5 sigma in our case). The occurrence of this spatial pat- 
tern thus could be a consequence of global anthropogenic 
greenhouse gas forcing, regional aerosol forcing and na- 
turally occurring variations in atmospheric circulation 
patterns and is thereby fully consistent with the current 
understanding of the role of anthropogenic aerosols in 
explaining 20th century global warming [10]. 

One of the reasons that our statistical analysis results 
in such a high significance may be that autocorrelation 
properties of the time series is not preserved using the 
classical bootstrap method. A method to overcome this 
problem is to use a block bootstrap [31], in which blocks 
of data are resampled rather than individual measurement 
points. The use of blocks ensures that the autocorrelation 
properties of the data are preserved. The block length de- 
pends on the exact autocorrelation properties and can be 
estimated from the data, which in case of the CNT tem- 
peratures is six years. Testing for statistical significance 
using the block-bootstrap results in significance levels of 
approximately 97%, which is much smaller than the 5- 
sigma result from the traditional bootstrap. However, the 
block-bootstrap turns out to be unstable: the longer the 
block period, the smaller the statistical significance. Rea- 
son is that the CNT data contains one prominent change 
point, and selecting longer periods increases the possibil- 
ity that the change point is resampled. This lack of stabil- 
ity indicates that for the time series at hand—non-sta- 
tionary, autocorrelated and containing one change point— 
the block-bootstrap is not a suitable method for change 
point detection. 

Further investigation of literature on the use of boot- 
strap methods suggests that in general no accepted boot- 
strap methods exist for non-stationary, autocorrelated 
time series containing change points [32]. On the other 
hand, Figure 1 shows that periods of three consecutive 
years with anomalously higher or lower temperatures do 
occur (for example 1907-1909; 1922-1924; 1940-1942; 
1947-1949; 1959-1961 and 1974-1977). The frequent oc- 
currence of such periods at least renders it possible or 
even plausible that such a sequence of events acciden- 
tally occurred around 1987-1988. Clearly more research 
is required from the perspective of statistics—in particu- 
lar for auto correlated non-stationary time series contain- 
ing change points.   
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Figure 4. Time series of three North Atlantic Oscillation Indices [35,36]. The upper panel shows the period 1900-now, the 
lower panel a zoom-in for the period 1975-now. Indicates in grays are the years 1984-1987 (dark) and 1987-1988 (light). 
 

Finally, the analysis of the spatial extent of the ECS 
also reveals reanalysis data, i.e. data based on many dif- 
ferent measurement types and from different sources, suf- 
fering from discontinuities which seriously hamper the 
identification of change points in long records. This is 
not unexpected, as inhomogeneities in reconstructed data 
have been reported before [33,34]. However, from the 
perspective of sudden climate change and shifts in cli- 
mate modes such contamination hampers the analysis of 
observational data. 
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