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Abstract 
Hydroxyapatite, a naturally occurring form of calcium phosphate, is the main 
mineral component of bones and teeth. Natural hydroxyapatite and bone 
have similar physical and chemical characteristics make it biocompatible. Its 
porous structure resembles native bone. The biocompatibility, biodegradabil-
ity and bioactivity make it extensively useful in interdisciplinary fields of 
sciences like chemistry, biology, and medicine. Calcium phosphate-based ce-
ramics are of great interest as substitutes of synthetic bone graft due to their 
similarities in composition to bone mineral and bioactivity as well as osteo-
conductivity. This article gives an overview of hydroxyapatite from its prepa-
ration and properties to biomedical applications of its composites. 
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1. Introduction 

Hydroxyapatites (HAP) is a naturally occurring mineral form of calcium apatite 
comprising of about 50% of the weight of the bone, which accounts for its excel-
lent osteoconductive and osteointegrative properties [1] [2] [3]. It is a main 
component of bone mineral but in some cases carbonate-apatite is a main hard 
tissue component, as in dental enamel [4]. One of the most common apatites 
used as bioceramic in medicine and dentistry is hydroxyapatite (HAP) due to its 
bioactivity and osteoconductive properties in vivo [5] [6] [7] [8]. The advantage 
of using HAP as a bioceramic or biomaterial compared to other bioceramics, 
such as Bioglass or A-W glass-ceramic, is its chemical similarity to the inorganic 
component of bone and tooth. Chemically hydroxyapatite is Ca5(PO4)3OH but 
often written as Ca10(PO4)6(OH)2. Naturally, hydroxyapatite is an inorganic 
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component found in human hard tissues such as tooth and bone. These mate-
rials are generally used as human body implant materials. Natural hydroxyapa-
tite can be prepared from eggshells, coral, fish bone, chicken bone, etc. [9]. Re-
cently, hydroxyapatite has attracted interests because of its hemostatic proper-
ties, and bone healing function [10] [11] [12].  

This article gives an overview on different ways of hydroxyapatite preparation, 
its properties and biomedical applications of its composites. 

2. Preparation of Hydroxyapatite  

Hydroxyapatite can be prepared by different methods such as sol-gel process 
[13], chemical precipitation [14], etc. Chaudhari et al. prepared the HAP by ap-
plying the following reaction [15]. 

( ) ( )2 4 2 10 4 6 210CaO K HPO 4H O Ca PO OH 12KOH+ + → +  

Khoo et al. prepared natural HAP from the bovine femur via calcinations at 
different temperature. It was observed that particle size and calcination temperature 
affect the composition, crystallinity and crystallite size of the extracted natural 
HAP [16]. 

HAP can be produced from coral [17], seashell [18], eggshell [19] [20] [21] 
and also from body fluids [22]. There are numerous methods have been reported 
for the preparation of hydroxyapatite from eggshell. One of them is the hydro-
thermal method. It is extensively reported method of HAP production from 
eggshell [23]. This method of preparing HAP from eggshells in a phosphate so-
lution at a high temperature is a novel approach for synthesizing valuable bio-
medical materials [19]. In this method, fine hydroxyapatite single crystals are 
prepared by a hydrothermal method with Ca(OH)2 and CaHPO4⋅2H2O as start-
ing materials. HAP prepared from hydrothermal methods has more crystallinity 
and good homogeneity, the major advantage of hydrothermal method. This me-
thod is direct and straight forward which gives all the characteristics band of 
HAP but it is laborious and time consuming [19].  

Next is the microwave irradiation method, it requires a chelating agent i.e. 
ethylenediamine tetra acetic acid (EDTA) (Figure 1) [24]. This is an indirect 
way where synthesis of HAP is generally led by formation of calcium precursor 
from eggshells as the first step. Thus, prepared HAP shows higher sinterability 
and stability at high temperatures with better stoichiometry, morphology, and 
osteoblast cell adhesion [23]. Türk et al. reported that microwave assisted bio-
mimetic synthesis can be a promising technique of preparing HAP powders in 
shorter time [25]. 

High energy mechanochemical activation method is also applied to produce 
HAP. It involves two processes: attrition milling and ball milling [26]. The me-
chanochemical reaction supplies enough amount of hydroxyl group to the start-
ing powders to form a single phase of hydroxyapatite. This is relatively simple 
and recommended for the mass production of high crystalline hydroxyapatite 
[27]. 
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Figure 1. Microwave irradiation method to prepare hydroxyapatite nanostructure from 
egg shell (adapted from Ref. 24). 
 

A simple sol-gel precipitation technique can be used to prepare nanohydrox-
yapatite from egg shell. The powder particles are polycrystalline in nature with 
an average size of 5 - 90 nm. The produced nano-HAP was found in pure form 
[28] with higher bioactivity than HAP coarser crystals [29]. Bernard et al. re-
ported the preparation of HAP by neutralizing suspension of lime Ca(OH)2 with 
solution of orthophosphoric acid at low temperature. It is a simple and 
non-polluting method [30].  

( ) ( ) ( )3 4 10 4 22 6 26H PO 10Ca OH Ca PO OH 18H O+ → +  

Guo et al. synthesized nanosized HAP particles via reverse microemulsion 
method with different values of hydrophile-lipophile balance (HLB). HAP par-
ticles prepared by the microemulsion route led to a smaller particle size and the 
improve degree of particle agglomeration as compared to conventional precipi-
tation method [31]. 

Basically, biomimetic processing is based on biologic systems store and 
process information at molecular level [32] [33] [34] [35]. The extension of this 
concept has upgraded in processing of synthetic bone in last few decades [36]. 
Hydroxyapatite (HAP)-gelatin (GEL) nanocomposites were synthesized using a 
biomimetic process [37]. 

3. Properties of Hydroxyapatite 

Sobczak-Kupiec et al. reported that the physicochemical properties and mor-
phology of HAP depended on the origin/preparation method [38]. Synthetic 
hydroxyapatite exhibited low crystallinity, with high porosity and more surface 
area. On the otherhand, HAP obtained from animal bone via calcination at 
800˚C possesses highest crystallinity [38]. 

Hydroxyapatite has the capability to form chemical bonds with surrounding 
hard tissues [39] [40] with the formation of a HAP interfacial layer [41]. The 
similar physical and chemical characteristics of natural hydroxyapatite with 
bone make it biocompatible [8]. 

Bowen co-workers studied the relationship between the composition and di-
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electric and piezoelectric composites for polarized bone substitutes. It was ob-
served that the addition of BaTiO3 increases permittivity and ac conductivity of 
the material [42]. It is summarized that HAP-BaTiO3 composites can be used as 
polarized bone substitutes [42]. 

Gao et al. prepared three porous scaffolds by sintering of bovine bone and 
three-dimensional gel-lamination method. The results demonstrated that three 
types of HAP scaffolds showed good attachment, proliferation and differentia-
tion of osteoblasts [43].  

Hydroxyapatite ceramic, derived from bovine bone by sintering, has a porosi-
ty and pore structure which resembles that of native bone. The porosity and the 
good wettability with water and organic solvents permit ceramic loading with 
drugs such as antibiotics, or substances that improve healing of bone [44].  

According to Zhang and Darvell, the morphology and structural characteris-
tics of hydroxyapatite whiskers depend on the initial Ca/P ratio (iCa/P) and pH 
(ipH), as well as the initial calcium concentration (i[Ca]) [45]. Deviation in these 
values did not affect on constitution, which was crystallographically indistin-
guishable from HAP. Ca/P ratio gradually improved with increase in both ipH 
and iCa/P, but was independent of i[Ca]. Uniform whiskers were obtained at 
high iCa/P and low ipH, or at high ipH and low iCa/P. Uniform whiskers were 
obtained at high iCa/P and low ipH, or at high ipH and low iCa/P. At low iCa/P 
and a low ipH branch-like whiskers and irregular plate-like particles were pro-
duced, while a high ipH supported the formation of lath-like HAP at high iCa/P. 
Preferred growth along the c-axis was greater at higher iCa/P and ipH as well as 
at low i[Ca] [45]. 

Werner and coworkers manufactured osteo implants having graded porosity 
by multilayer casting of HAP tapes with controlled pore structure [46]. The re-
sults proved that sintering temperature is a critical factor influencing density, 
microstructure and stability of HAP phase. The optimum sintering temperature 
to obtain maximum flexural strength for three layered structures was found to 
be 1250˚C. Pore-graded three-layer structures revealed approximately 40% 
higher flexural strength than a homogeneous three-layer structure with single 
pore size. The macroporous HAP network gives access for osteoblast-like cells 
which can attach, spread and propagate throughout the macropores and their 
interconnections [46]. 

Several studies have been reported the scanning electron micrographs of hy-
droxyapatite. Here, representative SEM of sample i.e. calcined at 900˚C is pre-
sented in Figure 2. In this image, the morphology of hydroxyapatite was found 
porous with pore size less than 1 μm in average and nonhomogeneous [8]. Fig-
ure 3(a) and Figure 3(b) presented representative SEM pictures of received bo-
vine bone (raw material) and bones annealed at 900˚C, respectively. The micro-
structure of received bovine seemed dense due to the presence of organic sub-
stances in the bovine bone matrix. A typical bone-like matrix was obtained for 
samples annealed at 900˚C as shown in Figure 3(a). Surface morphology 
showed the interconnected porous structure [47]. Rahavi et al. studied the  
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Figure 2. Scanning electron microscope image of sample calcined at 900˚C [8].  

 

 
Figure 3. SEM images of (a) bovine bone and (b) bone annealed at 900˚C [47]. 
 
surface morphology of the prepared hydroxypatite (HAP) ceramic particles via 
calcinations of natural bones and synthetic sol-gel method and observed the ag-
gregation of particles with rough and granular to dense surfaces. The size of 
HAP particles was predicted to the range between 50 - 500 nm [48]. 
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4. Applications of Hydroxyapatite (HAP) 

Historically, the first broadly tested artificial bioceramics was plaster of Paris 
(calcium sulfate) but they have ex vivo applications. By the end of 19th century, 
surgeons already used plaster of Paris as a bone-filling substitute [49] [50]. Ref-
erences [51] [52] [53] [54] [55] give details on recent history of CaPO4, bioce-
ramics and biomaterials. Fred Houdlette Albee (1876-1945), who invented bone 
grafting [56] made the first attempt to implant a laboratory produced CaPO4 as 
an artificial material to repair surgically created defects in rabbit bones in 1920 
[57]. He also invented some other advances in orthopedic surgery [50]. Presently 
hydroxyapatite has received much more interest as an implant material with ap-
plications in dentistry and orthopedics [58] [59] [60].  

Synthetic HAP has been used widely as an implant material for bone substi-
tute because of its excellent osteo inductive properties [61]. Oonishi explained 
the use of HAP composites in clinical orthopaedics for spacing or filling bone 
defects because of its important biological properties such as lack of immu-
no-reaction and absence of postoperative morphological change or volume de-
crease. HAP implants fixed with cement avoids problems of high density polye-
thylene wear particles [62]. Other applications of HAP include femoral plugs in 
total hip replacement and HAP coating on metal components for cementless 
fixation. For rapid and strong cementless fixation porous metal surfaces are 
used; HAP coating of porous metal gives improved results. Bioactive interfacial 
bone cementation technique was also developed by introducing fine HAP gra-
nules between the bone and polymethyl methacrylate (PMMA) cement [62]. 

Blends of polycarpolactone (PCL)/HAP, PCL/collagen (Col)/HAP, PCL/gelatin 
(Gel)/HAP, poly-L-lactic acid (PLLA)/Col/HAP and poly3-hydroxy-butyrate- 
co-3-hydroxyvalerate (PHBV)/HAP were studied by various research groups as a 
substitute for bone tissue engineering [63]-[68]. Scaffolds with HAP polymeric 
composites improved the new bone tissue development with increased osteoin-
tegration, osteoblast adhesion and calcium mineral deposition on its surface 
[68]. HAP-enhanced surface properties can be used to increase cell response and 
proliferation to induce mineralization in bone tissue engineering. Hydroxyapa-
tite has been used in diversity biomedical fields such as matrices for bone ce-
ments, controlled drug release, tooth paste additive, dental implants, etc. [65]. 

Prabhakaran et al. fabricated poly-L-lactic acid (PLLA)/HAP and PLLA/Collagen 
(Col)/HAP nanofibres by electrospinning and found that PLLA/Col/HAP nano-
fibres biocomposite are better than PLLA/HAP nanofibres for effective bone re-
generation and mineralization [68]. Polycaprolactone (PCL)/HAP/Col nanofi-
bres has interconnected porous structure which provided mechanical support 
and facilitated extracellular matrix (ECM) production for bone tissue formation 
[65]. Marra et al. examined the blends of biodegradable polymers, poly (capro-
lactone) and poly (D,L-lactic-co-glycolic acid), as scaffolds for applications in 
bone tissue engineering. HAP granules were introduced into the blends and 
porous discs were prepared. Mechanical properties and degradation rates in vi-
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tro of the composites were determined. The discs were seeded with rabbit bone 
marrow or cultured bone marrow stromal cells and incubated under physiologi-
cal conditions. This study suggested the feasible use of novel polymer/ceramic 
composites as scaffold in bone tissue engineering applications [69]. 

Calcium phosphate-based ceramics, such as HAP, are of great interest as syn-
thetic bone graft substitutes due to their similarity in composition to bone min-
eral and bioactivity as well as osteoconductivity [70]. 

Wang et al. blended hydroxyapatite (HAP) into poly (3-hydroxybutyrate) 
(PHB) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) to 
build films and scaffolds [71]. HAP blending, showed improvement in mechan-
ical properties of PHB including compressive elastic modulus and maximum 
stress as well as enhancement in osteoblast responses including cell growth and 
alkaline phosphatase activity. On the other hand, the blending of HAP particles 
into PHBHHx scaffolds fabricated by salt leaching was unable to either streng-
then its mechanical properties or enhance osteoblast responses. Although HAP 
is bioactive and osteoconductive, its blending with PHBHHx cannot generate a 
better performance on bone reconstruction [71]. 

Petricca et al. reported the composites of HAP and PLGA; poly (D,L-lactic-co- 
glycolic acid) and found the improved mechanical properties as well as increased 
osteogenic response of the HAP/PLGA composites are appropriate as bone subs-
titution scaffolds [72]. 

Palazzo et al. investigated the adsorption and desorption of anticancer drugs 
cis-diamminedichloroplatinum (II) (CDDP, cisplatin) and new platinum (II) 
complex di(ethylenediamineplatinum) medronate (DPM), as well as the clini-
cally relevant bisphosphonate alendronate, towards two biomimetic synthetic 
HAP nanocrystalline materials with either needle-shaped (HAP) or plate-shaped 
(HAP) morphologies and different physico-chemical properties. This work 
demonstrated that the properties of HAP nanocrystals can be modulated to 
produce HAP/biomolecule conjugates that are tailored for specific therapeutic 
applications [73].  

A transparent and slight yellow chitosan (CS)/HAP nanocomposite rods re-
ported high performed, potential application as internal fixation of bone frac-
ture. The method resolves the problem of the nano-sized particle aggregation in 
polymer matrix [74]. Hoffmann et al. fabricated HAP/starch/chitosan compo-
sites hemostatic material and proposed as a substitute for bone wax or even as a 
bone filling material for orthopedic surgery applications [75].  

Madhumathi et al. deposited HAP on the surface of chitosan hydrogel mem-
branes and evaluated the biocompatibility of these membranes using MG-63 os-
teosarcoma cells and suggested that chitosan hydrogel-HAP composite mem-
branes is applicable for tissue-engineering [76]. 

Electrospinning is cost effective and appropriate technique for the production 
of nanofibers for fabricating scaffolds with biomolecules and has been used 
across a wide range of biocomposite polymer systems and bone tissue engineer-

https://doi.org/10.4236/aces.2018.84016


S. Pokhrel 
 

 

DOI: 10.4236/aces.2018.84016 232 Advances in Chemical Engineering and Science 
 

ing actions [62]. Calcium phosphate ceramics has great importance in the field 
of tissue engineering for the biological applications [77]. Ngiam et al. fabricated 
the nanofibrous composites for mimicking the bone components and observed 
that deposition of HAP on PLLA/collagen nanofibers results in better early os-
teoblast attachment to mineralized nanofibers [78]. Rodríguez-Lorenzo et al. 
reported that HAP ceramic bodies with controlled porosity could be appropriate 
for hard tissue substitution or as carriers for controlled delivery of drugs or as 
scaffolds for tissue engineering [79]. Ramier et al. investigated PHB/nHAP bio-
composite scaffolds with structural, mechanical, and biological properties ap-
propriate for tissue engineering applications [80].  

Yang et al. reported the comparative study of blood clotting activity of HAP 
with other potential bone repairing materials such as calcium silicate, calcium 
combined attapulgite, calcium triphosphate, and chitosan to show HAP as rec-
ommended hemostatic constituent to replace bone wax. HAP is recommended 
as a promising constituent in fabricating hemostatic material in orthopedic ap-
plication as alternatives to bone wax [12]. Rahavi et al. mentioned that cells pro-
liferations were stimulated in the presence of HAP nanopowders obtained from 
horse and human bones via MTT assay. This HAP can be a viable and economi-
cal graft material for clinical applications [48]. Baradaran et al. prepared reduced 
grapheneoxide (rGO) reinforced hydroxyapatite nano-tube (nHAP) composites 
in situ via simple hydrothermal method in a mixed solvent system of ethylene 
glycol (EG), N,N-dimethylformamide (DMF) and water, without using any re-
ducing agents. Study of cell culture and viability test showed that the addition of 
the reduced graphene oxide improves osteoblast adhesion and proliferation, and 
hence increase the biocompatibility of the nHAP/rGO composite [81]. Zeng et 
al. fabricated graphene oxide/hydroxyapatite (GO/HAP) composite by electro-
chemical deposition method. The bioactivity of the synthesized GO/HAP com-
posite implant coatings showed better results, i.e. the improved MG63 cells ad-
hesion, proliferation and differentiation compared with the pure Titanium and 
pure HAP coating [82].  

Many investigations have been developed for 3D printing of polymer-ceramic 
composites, among them polymer-hydroxyapatite composites are of great inter-
est [83] [84]. It was found both in vitro and/or in vivo tests that 3D-printed bone 
tissue engineering scaffolds, based on polylactide (PLA)/HAP [83] [85], polyca-
prolactone (PCL)/HAP [84] [86], or poly(propylene fumarate) (PPF)/HAP [87] 
allow bone healing. 

Nano HAP has been applied for both bioimaging as well as therapeutic appli-
cations [88]. Morgan et al. reported that 20 - 30 nm diameter organically doped 
calcium phosphate nanoparticles can be prepared using various fluorescent dyes 
such as cascade blue, 10-(3-sulfopropyl) acridinium betaine (SAB), rhodamine 
WT, fluoresce in sodium salt, and Cy3 amidite and found that fluorescence 
quantum efficiency can be increased by 4-fold from 0.045 to 0.202 for the free 
and encapsulated dye respectively [89]. Nano HAP can be used as an antigen 
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carrier. Goyal et al. used cellobiose-coated, spherical nHAP ranging from 50 to 
150 nm to deliver a hepatitis B surface antigen (HBsAg) [90].  

The antibacterial properties of nano-hydroxyapatite can be increased by add-
ing silver ions in the HAP structure [91] [92]. Dubnika et al. developed a method 
to prepare a novel carrier system based on the silver-doped hydroxyapatite and 
loaded with lidocaine hydrochloride in the presence of chitosan or sodium algi-
nate (HAP/Ag/polymer/drug composite) [92]. 

5. Conclusions 

Hydroxyapatite is shown to be a significant material for biomedical applications 
due to its biodegradability, biocompatibility and bioactivity. HAP is a beneficial 
biomaterial for dental and medical applications. The HAP nanoparticles are 
more useful than conventional sized HAP bulk ceramics based on large sur-
face-to-volume ratio, reactivity, and biomimetic morphology of the HAP nano-
particles for applications such as fillers for composites, reparative materials for 
damaged enamel and carriers for drugs. This review gives an overview about the 
synthesis, properties and applications of HAP in biomedical domain. 

It can be concluded from the above presented investigations that despite nu-
merous methods elaborated the synthesis of HAP which are used as bone scaf-
folds and in dentistry, there is still a huge demand for developing a simple effi-
cient and green method for the production of HAP. 
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