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ABSTRACT 

Transcription factors (TFs) are the core sentinels of 
gene regulation functioning by binding to highly spe- 
cific DNA sequences to activate or repress the recruit- 
ment of RNA polymerase. The ability to identify tran- 
scription factor binding sites (TFBSs) is necessary to 
understand gene regulation and infer regulatory net- 
works. Despite the fact that bioinformatics tools have 
been developed for years to improve computational 
identification of TFBSs, the accurate prediction still 
remains changeling as DNA motifs recognized by TFs 
are typically short and often lack obvious patterns. In 
this study we introduced a new attribute-motif dis- 
tribution pattern (MDP) to assist in TFBS prediction. 
MDP was developed using a TF distribution pattern 
curve generated by analyzing 25 yeast TFs and 37 of 
their experimentally validated binding motifs, follow- 
ed by calculating a scoring value to quantify the reli- 
ability of each motif prediction. Finally, MDP was 
tested using another set of 7 TFs with known binding 
sites to in silico validate the approach. The method 
was further tested in a non-yeast system using the fi- 
lamentous fungus Magnaporthe oryzae transcription 
factor MoCRZ1. We demonstrate superior prediction 
reranking results using MDP over the commonly used 
program MEME and the other four predictors. The 
data showed significant improvements in the ranking 
of validated TFBS and provides a more sensitive sta- 
tistics based approach for motif discovery.  
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1. INTRODUCTION 

Transcription factors (TFs) are proteins containing one or 
more DNA-binding domains, which bind to specific DNA 
sequences to activate or repress the recruitment of RNA 
polymerase, thereby up or down regulate transcription of 
downstream genes [1,2]. In fungi, TFs bind to either en- 
hancer or promoter regions, usually 1 - 1500 bp upstream 
to the ORFs they regulate [3-5]. 

Understanding networks of transcriptional regulation 
is one of the most challenging yet important tasks in ge- 
nome analysis. Transcription factors function by binding 
to recognition sites in gene regulatory regions, which are 
generally degenerate motifs of 5 - 15 base pairs [6]. Ex- 
tensive research has focused on identifying transcription 
factor binding sites (TFBSs) by biological validation. Ne- 
vertheless, experiments identifying TFBSs are usually 
time-consuming and laborious, which made it difficult to 
de novo discover TFBSs without any candidate motifs 
and thus left the binding sites of most transcription fac- 
tors unclear [7]. Therefore, prediction of potential TFBSs 
utilizing bioinformatics approaches has become an es- 
sential tool to explore gene regulation networking. 

Different approaches have been tried and applied to 
discover novel TFBSs over years, which could be put 
into two categories. Prediction tools in the first category 
search for the over-represented motifs in a given set of 
sequences—usually promoter regions of co-regulated 
genes or ChIP-chip/ChIP-seq identified binding regions. 
This strategy has been used widely since it does not re- 
quire additional information other than the sequences. In 
the searching process, TFBSs could be treated as either a 
Position Weight Matrix as in MEME [8] and GLAM [9], 
or consensuses as in SMILE [10] or Weeder [11], when 
heuristic approach was applied and exhaustive enumera- 
tion was avoided. Top candidates after scoring and sort-  *Corresponding author. 
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ing are then represented in the form of a position fre- 
quency matrix (PFM) [12], or a position weight matrix 
(PWM). However, application of this approach was lim- 
ited by the computational speed and scale of input data, 
thus could hardly be applied on the thousands of se- 
quences generated by ChIP-seq. As a result, new tools 
such as DREME [13] and WordSeeker [14] were de- 
signed specifically for large input dataset, which utilize 
new mapping algorithms and multi-nodes computation 
platform to significantly increase speed. Another way to 
search TFBSs focuses on biological information such as 
evolutionary conservation. This strategy is based on the 
assumption that the conserved non-coding regions across 
related species are likely to be under negative selection 
force and thus contain functional motifs. Due to the fast 
increase of available genome sequences, this method has 
been developed quickly in recent years, and generate 
lower rate of false-positive compared to other methods. 
[15,16]. To date, various software have been developed 
to analyze possible binding motifs, however, the multi- 
faceted biochemical interactions between proteins and 
DNA may easily lead to false-positive results and make 
theoretical predictions of TFBSs error prone [17]. 

Yeast transcription factors were used in this study as 
training and testing data sets. Saccharomyces cerevisiae 
is the most widely used and most well studied yeast spe- 
cies, whose genome serves as one of the most thoroughly 
analyzed to date [18]. Recently, multiple yeast databases 
have been built and published, including two transcrip- 
tion factor databases used in this study [19,20]. 

To expand this method to filamentous fungi, the 
MoCRZ1 transcription factor from Magnaporthe oryzae, 
a fungal pathogen that cause severe rice blast disease 
worldwide, was included [21]. MoCRZ1 is a C2H2 zinc- 
finger type transcription factor activated by calcineurin 
dephosphorylation and functions as a mediator of cal- 
cineurin signaling [22]. In 2010, Kim et al. identified the 
binding sequences of MoCRZ1 by applying both ChIP- 
chip and microarray approaches, reporting three binding 
motifs predicted from the bound sequences [23]. 

In this study, we developed a strategy to improve the 
predictions made by MEME, using the transcription fac- 
tor binding motif distribution pattern (MDP) information. 
Twenty-five well-studied TFs with their previously vali- 
dated binding motifs were selected to form a training da- 
taset. Although similar spatial distribution of yeast TFBSs 
has been reported [24], we focused on TFBS prediction 
improvement by using a novel MDP approach. 

2. RESULTS AND DISCUSSIONS 

2.1. General Distribution Frequency Curve 

As showed in the analysis pipeline (Figure 1), we 
checked all the 113 TFs with their 301 documented  

 
Figure 1. Analysis pipeline. 
 
binding motifs from the yeast transcription factor data- 
bases “YEASTRACT” [19].Then in the filtering step 32 
TFs which have more than 50 documented regulated 
genes were chosen. Some TFs had multiple binding mo- 
tifs but similar to each other, so we referred to the posi- 
tional-weight matrix provided by the database “JAS- 
PAR” [20] and merged those similar motifs to generate a 
consensus motif sequence (details in methods). In total, 
32 TFs with 63 target motifs were included in the analy- 
sis dataset (Table 1). 25 TFs with 37 validated binding 
motifs were randomly chosen to build the training data- 
set (Table 2), and the other 7 TFs formed the testing 
dataset. For each motif, their occurrence locations in the 
validated regulated gene models were scanned in 1000 
bp upstream of transcription start site (TSS). Next, a ge- 
neral distribution curve was drawn from the average dis- 
tribution of all motifs (Figure 2). It was observed from 
the curve that the lowest frequency was 2.3% at a region 
−50 bp to 0 bp, while the highest frequency was 9.2% at 
a region −200 bp to −150 bp. A peak was observed from 
the region −275 bp to −100 bp, with center at about −200 
bp. This distribution pattern was similar to those from 
previous studies in yeast [24,25] and human [26]. 

2.2. Estimating Reliability of Motif Prediction 

It was assumed from the pattern of the distribution curve, 
that majority of transcripti n factors worked as short  o 
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Table 1. List of yeast TFs involved in training and testing groups. 

TF Name TF structure 
Number of regulated 

genes 
TF name TF structure 

Number of regulated 
genes 

Rgt1 Fungal Zn cluster 63 Xbp1 Rel 501 

Azf1 Beta-beta-alpha zinc finger 127 Reb1 Myb 512 

Rtg1 Helix-loop-helix (bHLH) 129 Pdr8 Fungal Zn cluster 547 

Mot3 Beta-beta-alpha zinc finger 135 Hsf1 E2F 571 

Gzf3 GATA 149 Tec1 Homeo 571 

Rlm1 Beta-beta-alpha zinc finger 205 Swi4 Rel 614 

Gis1 Beta-beta-alpha zinc finger 223 Gln3 GATA 668 

Fkh1 Forkhead-associated (FHA) 241 Abf1 Helix-loop-helix (bHLH) 669 

Fkh2 Forkhead-associated (FHA) 313 Msn4 Beta-beta-alpha zinc finger 740 

Cbf1 Helix-loop-helix (bHLH) 337 Aft1 No confident structure 1114 

Pho4 Helix-loop-helix (bHLH) 379 Msn2 Beta-beta-alpha zinc finger 1187 

Nrg1 Beta-beta-alpha zinc finger 399 Gcn4 Leucine zipper 1260 

Mcm1 MADS 403 Met4 Leucine zipper 1260 

Adr1 Beta-beta-alpha zinc finger 443 Yap1 Leucine zipper 1824 

Leu3 Fungal Zn cluster 495 Ste12 Homeo 2142 

Mbp1 Rel 498 Yap3 Leucine zipper 59 

 

 
Figure 2. Distribution frequency curve of training group. Each block coded by colors represents the frequency of one 
training motif in each scanning window. The curve was generated as average of all blocks. 

 
distance cis-elements binding specifically at −300 bp to 
−100 bp—a region referred to as the “PR” (peak region), 
but not at the other two regions: −150 bp to 0 bp re- 
garded as the “NBR” (non-binding region) where most 
transcription initiation complexes bind; and −1000 bp to 
−250 bp regarded as the “DR” (distal region). To quan- 
tify pattern fitness, a DP (distribution pattern) value was 
introduced to estimate fitness of any TF binding motif to 

the general frequency curve. The DP value was gener- 
ated from shape of the general distribution curve and an 
assumption: a “true” binding motif should occur more 
often in the PR, but not NBR or DR, while a random 
over-represented motif sequences may not have any spe- 
cific distribution preference in the 1 KB upstream region. 
So if you compare the average occurrence/frequency of 
PR and that of NBR and DR, the former should be higher  
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Table 2. TFs in training group. 

TF Documented motif 
Motif 
length 

Number of 
binding sites

Peak 
location

RTCRYBN{4}ACG 13 212 175 

RTCRN{6}ACGNR 15 156 175 

TNNCGTN{6}TGAT 16 61 175 
Abf1 

TCN{7}ACG 12 507 175 

Adr1 TTGGRG 6 146 275 

Aft1 TRCACCY 7 138 125 

Azf1 AAMRGHA 7 221 75 

RYAAACAWW 9 85 75 
Fkh2 

RTAAAYAA 8 118 100 

TGASTCAY 9 85 200 

RRTGACTC 8 79 175 Gcn4 

CACGTG 8 168 275 

Gis1 AGGGG 5 120 300 

Gln3 GATWDG 6 618 N/A 

TTCNNGAA 8 240 200 
Hsf1 

GAANNTTC 8 188 225 

DCCYWWWNNRG 11 201 225 
Mcm1 

CCYWWWNNRG 10 234 200 

Met4 TCACGTG 7 79 375 

Mot3 AGGYA 5 203 325 

Msn2 CCCCT 5 536 175 

Msn4 CCCCT 5 336 275 

CCCTC 5 167 325 
Nrg1 

CCCCT 5 165 325 

Pdr8 TCCGHGGA 8 51 325 

Pho4 CACGTK 6 182 300 

Rgt1 WWNNTCCK 8 105 350 

Rlm1 TAWWWWTAGM 10 52 325 

Rtg1 GTCAC 5 233 N/A 

Ste12 TGAAACA 7 210 225 

Swi4 CRCGAAW 7 150 300 

RMATTCYY 8 234 275 

CATTCTT 7 89 N/A

CATTCT 6 217 N/A
Tec1 

CATTCC 6 137 N/A

Yap1 TTACGTAA 8 50 175 

Yap3 TGACTCA 7 88 175 

in a “true” binding motif and a larger difference repre- 
sents a more reliable prediction. We thus proposed a for- 
mula to calculate the DP value which was expected to be 
close to zero in a random motif. A motif with DP value 
zero or negative then has lower possibility to be the bio-
logically “true” TF binding motif. The DP value was cal- 
culated as the following formula: 

DP value = (Average PR Occurrence × 2) − (Average 
NBR Occurrence) − (Average DR Occurrence). 

2.3. Testing 

Seven TFs were involved to test if the utilization of DP 
value could assist in improving TFBS predictions. Four 
public motif finding tools were included in the perform- 
ance comparison: MEME (published in 1994), MDscan 
(published in 2002), WordSeeker (published in 2010), 
and DREME (published in 2011). These four tools all 
search for statistically over-represented motifs in a given 
sequences set. MEME uses the expectation maximization 
to fit a two-component finite mixture model to the input 
sequences, and multiple motifs are found by probabilis- 
tically erasing the occurrences of the top motif and then 
repeating the process [8]. MDscan combines the advan- 
tages of two motif search strategies: position-specific 
weight matrix updating and word enumeration to en- 
hance the success rate [27]. DREME [13] and Word- 
Seeker [14] were developed in recent years and specifi- 
cally designed to process large size of ChIP-chip/ChIP- 
Seq datasets on scalable analysis platforms. 

For each TF, the 1000 bp upstream sequences of their 
documented regulated genes were firstly selected as in- 
put into MEME for consensus motif search with the tar- 
get motif length parameter set from 5 bp to 9 bp. The top 
ten consensus motifs in the results were then processed 
to calculate their OR and DP value.  

The OR (over-represent) value, or the observed: ex- 
pected frequency ratios (O/E) descripted and utilized in a 
previous study [28] reflects the statistical over-represent 
of these consensus motifs. OR value was calculated as 
following formula, where O refers to the overall occur- 
rence of a motif across the 1KB upstream sequences set, 
“ln” is the natural logarithm, and Eo represents the ex- 
pected occurrence of that motif: 

OR value = O × ln (O/Eo) 

Taking transcription factor “Fkh1” for example, the 
top ten consensus motifs from MEME were originally 
ranked by P-value which represents the possibility of 
obtaining this motif solely by chance. The first two mo- 
tifs AAA[AG]A[AG]AAA and TT[TC][TC]T[TC]TT 
[CT], were likely to be simple sequence repeats and thus 
being removed from the ranked results. The 2nd motif 
[GT]GTAAACAA and the 3rd motif [TCG]TTGTTTAC 
were reverse complimentary to each other and matched  
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documented Fkh1 motifs [AG][CT]AAACA[AT][AT] 
[29] and [AG]TAAA[CT]AA [30]. The remaining 6 con- 
sensus motifs were not Fkh1 documented binding motifs 
(Figure 3, Table 3). 

average and standard deviation of both value is close to 
each other. The Re-rank value was calculated as follow- 
ing formula: 

Re-rank value = OR value + DP value × 1000 
The MDP approach utilize both the over-representa- 

tion information-measured by OR value, and the distri- 
bution pattern information-measured by DP value. Since 
both values represent the reliability of the motif predic- 
tion-higher value represents higher reliability—a re-rank 
value was introduced to combine both values so the 
“true” motifs with over-represented occurrence and dis- 
tribution pattern fitting the general curve will obtain 
higher value and thus be picked up from all the candi- 
dates. To even the contribution of the two values, we 
checked the OR and DP value in all the training dataset, 
and decide to amplify DP value by 1000 times so the 

After re-ranking based on the Re-rank value, the motif 
originally in the 1st place ranked by MEME showed a 
negative DP value and thus dropped to 5th in the MDP 
rank, since its distribution pattern showed little similarity 
to the general TF frequency curve, while the two docu- 
mented Fkh1 target motifs were raised from 2nd/3rd to 
1st/2nd. Since these two target motifs are reverse com- 
plimentary to each other, we recorded the rank change as 
2nd in MEME and 1st in MDP. 

Same as descripted in “Fkh1”, the upstream sequences 
of the 7 TFs were input into MDscan, WordSeeker and 

 

 
Figure 3. Fkh1 candidate motifs frequency curve. 
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Table 3. Fkh1 consensus motifs testing result. The two motifs in bold type represent two documented Fhk1 binding motifs. 

Candidate motif Annotation Rank by MEME OR value DP value (×1000) Re-rank value Rank by MDP

AAA[AG]A[AG]AAA Simple repeat Removed 671.5 47.2 718.7 Removed 

TT[TC][TC]T[TC]TT[CT] Simple repeat Removed 255.8 60.3 316.1 Removed 

[TC]TG[TC]TG[TC]TG  1 115 −37.0 78.0 5 

[GT]GTAAACAA Fhk1 2 79.1 114.9 194.0 2 

[TCG]TTGTTTAC Fhk1 3 71.8 147.6 219.4 1 

CAGC[AG]GC  4 54.6 −28.5 26.1 8 

CAAGAAA  5 61.1 −26.6 34.5 7 

T[AG]TATATAT  6 43.2 56.5 99.7 4 

GAAAAAG  7 53.8 11.2 65.0 6 

T[TG][TGC]CC[CT]TTT  8 72.6 98.4 171.0 

Re-rank 
process 

3 

 
DREME, seeking for motifs with expected length around 
8 bp and other parameters were left as default. Out of 7 
tested TFs, 2 motifs (Xbp1 and Gzf3) failed to find vali- 
dated target binding motifs in the top 10 consensus mo- 
tifs predicted by MEME or other predictors. Summary of 
the remaining 5 TFs were showed in Table 4. Among the 
5 target motifs, MDP predicted four motifs as the 1st and 
one motif as the 2nd in rank. While MEME and DREME 
only predicted two target motifs as the 1st in rank; MD- 
scan and WordSeeker each failed to predict two target 
motifs in the top ten results. Some repeat-like sequences 
were noticed in MDscan and WordSeeker results, indi- 
cating their detections were somehow disturbed. Overall, 
MDP generated a better rank for the target motifs com- 
pared to other four tools. 

MoCRZ1, a transcription factor involved in Ca2+/Cal- 
cineurin signaling in Magnaporthe oryzae, was also used 
to estimate this MDP approach. Recently, three binding 
motifs (TTGNTTG, CAC[AT]GCC, TAC[AC]GTA) of 
MoCRZ1 in M. oryzae were predicted from 106 binding 
sequences discovered by ChIP-chip and microarray me- 
thods [23]. We tested if the MDP approach could iden- 
tify the “true” MoCRZ1 binding motifs without the need 
of ChIP-chip data. From published microarray data [23], 
190 genes were picked as predicted MoCRZ1 regulated 
genes as they all showed a 2 fold or greater expression 
change between the control and libraries of Ca2+ defi- 
ciency, MoCRZ1 inhibitor added, and the MoCRZ1 de- 
letion. Results of the top ten consensus motifs predicted 
by MEME from 1000 bp upstream of MoCRZ1 regulated 
genes with their distribution pattern curves were shown 
in Figure 4 and Table 5. Three target motifs were origi- 
nally ranked by MEME as the 1st, 5th, and 6th, after two 
simple repeats being removed. After re-ranking, these 
three target motifs went up to 2nd, 4th, and 5th. It was 
observed that another two motifs ([GT]CTTGGC and 

TGCCAAG ) which originally ranked at the 3rd and 8th 
moved up to the 1st and 3rd, also showed a significant 
rank improvement. These two motifs were next searched 
in the TOMTOM [31] database and identified as “Rim101” 
binding motifs, which was reported as a transcription 
factor involved in a pathway acting in parallel to Crz1 
via calcineurin [32]. 

3. CONCLUSIONS 

In this study, we developed the MDP approach to im- 
prove TFBS prediction. Genome-wide TFBS identifica- 
tion is generally challenging with both experimental vali- 
dation and computational analysis required to refine 
TFBS predictions. The use of TFBS distribution profiles 
improves the accuracy of predictions by estimating both 
the over-representative level of the candidate motifs and 
their distribution pattern as well. The major originality 
here is that we are focusing on improving TFBS predic- 
tion by utilizing distribution pattern. 

4. METHODS 

To select transcription factors, all the 113 TFs from the 
yeast transcription factor database “YEASTRACT” were 
checked and the number of their documented regulated 
genes was counted. Those TFs having less than 50 do- 
cumented regulated genes were filtered out. We noticed 
that some TFs recorded in “YEASTRACT” had multiple 
documented binding motifs, however, regular expression 
sequences of some binding motifs from the same TF 
showed high similarity, and thus could be clustered into 
a single motif. In those cases, the position weight matrix 
was checked from the “JASPAR” database. If the clus- 
tering was supported by the PWM, then the different mo- 
tifs were merged into a new one. For example, TF “Aft1” 
had 4 recorded binding motif  in “YESTRACT” database: s 
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Figure 4. MoCRZ1 candidate motifs frequency curve. 

 
Table 4. Test results of all testing group. “N/A” means the target motif was not found in the top ten candidate motifs returned. 

TF name Documented binding motif Rank by MDP Rank by MEME Rank by MDscan
Rank by  

WordSeeker 
Rank by DREME

Fkh1 [TCG]TTGTTTAC 1 2 N/A 3 2 

Cbf1 [TG]CACGTG[AC][TC] 1 1 1 1 1 

Leu3 G[CG]C[AG][CAT]GGCC 2 6 5 N/A 8 

Mbp1 [AT]GC[TGA]GC[TA]G[CA] 1 3 N/A N/A 8 

Reb1 [GA]TTACCCG[GC] 1 1 1 1 1 
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Table 5. MoCrz1 consensus motifs testing result. The five motifs in bold type are three MoCRZ1 binding motifs and two Rim101 
binding motifs. 

Candidate motif Annotation Rank by MEME OR value DP value (×1000) Re-rank value Rank by MDP 

AAAAAAAAA Simple repeat Removed 356.2 −1.3 354.9 Removed 

TTTT[TC]TTTT Simple repeat Removed 369.5 1.1 370.6 Removed 

TA[GC][GC]TACCT MoCRZ1 1 165.7 40.4 206.2 2 

AGGTAGGTA  2 84.8 0 84.8 8 

[GT]CTTGGC Rim101 3 136.3 88.5 224.8 1 

CTAG[AT]CTAG  4 68.1 48.6 116.8 6 

CACAGCC MoCRZ1 5 85.5 46.6 132.2 5 

T[GT]GTT[TG]T[GT]G MoCRZ1 6 77.2 56.6 133.9 4 

TTT[GT][GCT]TTGC  7 101.3 0.7 102.1 7 

TGCCAAG Rim101 8 65.7 78.7 144.4 

Re-rank 
process 

3 

 
YRCACCCR, TGCACCC, GGCACCC, and  
TGCACCCA, while only one matrix is recorded in 
“JASPAR”. So in the clustering process, consensus bind- 
ing motif sequences of Aft1 were generated as “TRCACCY”. 
After clustering, each of the target motifs was scanned in 
the 1 KB upstream TSS region of all genes in the yeast 
genome to check for number of occurrence. Any motif 
with less than 100 or more than 2000 occurrence were 
removed. The remaining 32 TFs were randomly divided 
into two groups: 25 TFs in training group and 7 in testing 
group.  

List of documented regulated genes of the 32 TFs was 
downloaded from “YEASTRACT” database. Their 1 KB 
upstream sequences were extracted from the yeast ge- 
nome sequence and were used to scan for the binding 
motif sequences. The 1 KB upstream region was divided 
into twenty 50 bp windows and motif occurrence in each 
window was counted. Then the average occurrence of 
each window was calculated and a general frequency 
curve was generated. 

For each TF in the testing group, the 1 KB upstream 
sequences of their regulated genes were input into MEME 
running on a local cluster, to search for consensus motifs 
with their expected length around 8 bp, as well as into 
MDscan, WordSeeker, and DREME. Then the top ten 
consensus motifs reported from MEME were used as 
queries to define the MDP. 
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