The Design and Development of Wireless Communication Module Based on Bluetooth Chip

Wei FU 1, Shihua TONG 2, Yachao ZHANG 1, Jun ZHANG 1
1Key Laboratory of Network Control & Intelligent Instrument ministry of Education, Chongqing university of posts and telecommunications, Chongqing, China
2Computer application department, Chongqing College of Electronic Engineering, Chongqing, China
Email: vivian1029cn@yahoo.com.cn

Abstract: By a comprehensive application of BlueCore2-External Bluetooth chip, FB2520 band-pass filter and balanced imbalance converters, LTCC ceramic antenna and so on, an industrial-grade Bluetooth wireless communication module is designed. The communications module can be used to instead of cable, effectively applied to complex and variable industrial field, realize wireless communication among field device, access point and Transcription Machine. The result of tests indicated the wireless communication module has been running steadily and working reliability.

Keyword: Bluetooth, BlueCore2-External, Wireless Communication Module

1. Introduction

Bluetooth is a very promising wireless transmission technology. There are already a large number of Bluetooth products on the market, such as with Bluetooth-enabled laptops, cell phones, headsets and so on. In the era of technology increasingly updated, Bluetooth continues to develop step by step toward higher performance [2]. In this paper, we have designed a high-speed Bluetooth module using the BlueCore2 Bluetooth chip supporting V1.1/V1.2 standard produced by CSR corporation. This module has some specific characters such as small, low power consumption, reliable performance, flexible network and so on. In addition, because of the terrible industrial conditions, this module can be embedded in industry field apparatus, the junction point, the hand holds and so on to realize wireless communication.

2. The Design of Bluetooth Module Hardware

The hardware architecture diagram of Bluetooth module includes the BlueCore2-External (BC212015) Bluetooth chip, the SST39VF800 FLASH chip, the FB2520 band pass filter + balanced imbalance converters, the LTCC ceramics antenna and so on as shown in Figure 1[5]. The power source introduced by the corollary main equipment provides +3.3V and +1.8V power source for the Bluetooth main chip, the memory, the band pass filter and balanced the switch and so on through the level-translation of power source. Each module will be separately introduced in the follow.

2.1 The Introduction of BlueCore2 Chip

The Bluetooth module has used the BlueCore2-External (BC212015) chip. It is a single Bluetooth chip released by British CSR Corporation which works on 2.4GHz ISM (industry, science, medicine), the frequency band integration base band and the radio frequency.

Its main feature is as follows[1]:

◆ Conforms to Bluetooth V1.1 and V1.2 standard;
◆ 1.8V low working voltage;
◆ Least periphery component;
◆ 96 foot VFBGA LGA and LFBGA seal;
◆ 0.18um CMOS technology;
◆ Supports 8Mbit to expand flash;
◆ Complete Bluetooth agreement structure.

The internal structure of BlueCore2-External chip is as shown in Figure 1. The interior chip mainly integrates the 32Kbytes piece front RAM, DSP, MCU, the radio frequency as well as each kind of I/O port. Each kind of I/O port includes the connections of SPI, UART, USB,
PIO, PCM, and I2C. And the connection of SPI, UART, USB are mainly used to transmit data; The I2C is mainly used to link EEPROM; The PIO connection is the programmable connection; The PCM connection is used to transmit the pronunciation. In BlueCore2, the biggest transmission rate of the UART connection can reach to 1.5Mbps, which can achieve the 723.2kbps data transmission number in the Bluetooth standard.

2.2 Memory Circuit

Because the Bluetooth chip does not contain the agreement stack, it needs a Flash to store up the agreement stack and the application software. In this design we selected SST39VF800 one of SST39VF series section made by Silicon science and technology company. SST39-VF800 is the successful model of FLASH technology of multipurpose high accuracy CMOS of SST. Because it has adopted the separation gate cell design method and the oxidized channel spraying technology, its memory reliability was greatly enhanced and the craft and the performance were far surpass other competitor. In addition SST specially has also carried on the SST39VF800 performance optimization for the portable equipment, which causes it to be smaller in the movement energy consumption, be quicker in the program execution and more suitable portable equipment to use. It uses 8Mbit SST39VF800 according to the Bluetooth agreement stack's size. Its access time is 70ns and the working voltage is 2.7~3.6V. To adapt the industry scene harsh request, it selects to support the model of -20~+85℃ technical grade temperature range.

2.3 Band Pass Filter + Balanced Switch (Balun)

Usually the radio frequency transmitter outputs is two group differential signals of TX_A and the TX_B, which output characteristics is balanced (symmetry). But the cables the antenna export uses the 50 ohms unbalanced coaxial cables. When coaxial cable connects balanced system, coaxial cable not just shields the high-frequency current in the inside layer also the high-frequency current to wind through in the outside layer, which will cause the nonessential coupling, create many disturbances and will be serious to enable the equipment unmoral working. Therefore, it is necessary to accesses the balanced - imbalanced switch between the antenna and the transmitter out-port. The band pass filter is generally the passive component its role filters in the frequency band signal which the receiver does not need, and (LNA) provides the selective signal for low noise amplifier to play reduces the disturbance the function.

2.4 Power Source Module

The Bluetooth module needs two kinds of voltages both 3.3V and 1.8V, 1.8V provides power for the Bluetooth chip and the band pass filter + balanced, the other voltage 3.3V provides power for the FLASH chip and the Bluetooth chip periphery I/O foot. Because the voltage introduced from the main equipment is 3.3V, it needs the DC-DC chip in the Bluetooth module achieving the voltage transformation. XC6204B182MR the high speed LDO transformation chip carries on 3.3V to transform to the 1.8V voltage in this design, which has widely applied in mobile phone. This chip maximum output electric current was 150mA and the output voltage scope is 1.8V-6V, which completely satisfied the need of power source for the Bluetooth module.

2.5 Crystal Oscillator CSX-5032

The crystal oscillator is CSX-5032, that is a section of non-lead surface manufacture, pastes the lamellar crystal body unit. Had the redundant reliable ceramic seal to guarantee the part high frequency time stability and the remarkable weld ability in Personal Access Phone System, the GPS hand-hold equipment, the Bluetooth, WLAN and so on widespread application. We have selected a section of 16MHz model, the outlook size for 5mmX3.2mm,25℃ the frequency tolerance are +-10ppm, the frequency stability are +-5ppm.

3 The Design of Bluetooth Module Software

The Bluetooth module's software design divides into two parts: the protocol layer loads, the module initial parameter establishment. The Bluetooth agreement provides the complete solution for many kinds of applications established above the Bluetooth technology, but only used several parts of the Bluetooth agreement in different of application, moreover also did not need to use the complete function provided by each part of agreements.

3.1 Protocol Layer Load

As shown in Figure 2, because this module mainly applies in the industry wireless communication, only loaded the base band in module exterior Flash (including LC), LM and HCI (main engine control interface) protocol layer. And HCI provided the command interface for the base band controller and the link supervisor in the Bluetooth hardware, realized to visit the hardware condi-
tion register and controls register, specially this interface provided unification access mode to the Bluetooth base band. Loading these protocol layer module realize the complete Bluetooth link control and the embedded HCI agreement, shielded the radio frequency and the base band two hardware protocol layer, the later application development might start directly from the HCI level[5]. Through seals the HCI protocol layer, may produce the standard the HCI connection function, and provides a complete platform for the upper formation application development.

Has UART or the USB connection in the exterior main engine, the Bluetooth module and in the main engine signal level compatible situation, does not need to increase other auxiliary circuits again, this Bluetooth module can connect with the main engine directly.

This is the main engine and the Bluetooth hardware connection schematic drawing as shown in Figure 3. The main engine controller connection (HCI) provided one kind general connection to visit the Bluetooth hardware. Through the visit to base band order, the link supervisor order and the hardware condition register, HCI carries out that order to Bluetooth hardware. Several middle tones which exist in the main engine system's HCI driver and between the Bluetooth's hardware HCI firmware, are also called the main engine controller transmission level, provides the ability to transmit data. This level's goal is the transparence, the main engine controller driver did not care that it is on UART or on USB, UART and USB transmit to the main engine controller driver to the main engine controller's data cannot carry on processing, such main engine controller connection and the main engine controller may carry on the promotion, promotes cannot to transmit the level to have any influence.

3.2 Module initial parameter establishment

After the Bluetooth module loaded each kind of protocol layer, cannot work, but also needs to carry on the establishment according to the different hardware design to the module initial parameter. Initial parameter establishment based on the bluecore2 Bluetooth chip is called the PSK establishment. It can be implemented through the BLUELAB integrated development environment or PS Key software, as shown in the Figure 4.

4 Bluetooth module application examples

As shown in Figure 4, take the Bluetooth valve locator and the Bluetooth manual operator for example. The Bluetooth module communicates with the control panel in the valve locator by the serial port (UART) full-duplex and the valve locator's valve position value, the valve position upper limit and so on each kind of parameter delivers the Bluetooth module through the serial port and all the parameters are transmitted to the manual operator.
by the way of Bluetooth wireless. The manual operator can modify the corresponding parameters through the related command dynamically. This has changed the traditional method of parameter settings and modifications. The Bluetooth modules in the valve locator’s are set passive attended mode. The equipment started and the valve positioner collected the value of the position periodically and stored in the buffer of the device. When the Bluetooth manual operator search for valve locator, the Bluetooth manual operator send the link command to valve locator. After the link were established, the Bluetooth manual operator will obtain a link handle. Then enters the monitoring surface as shown in Figure 5, may carry out reads the valve position value, the valve position upper limit, as well as writes the upper limit three functions. When each function execute, the Bluetooth manual operator send a control command to Bluetooth module by UART. This instruction include the Bluetooth link handle, the function code (0x01-0x03 to aim at the above three functions respectively ) as well as the CRC verification territory. After the valve locator receives the control command, judges the link handle firstly, then judges whether to receive this instruction, and carries out the corresponding task respectively according to the function code. We can read the valve of the valve locator through the Bluetooth manual operator as showed in the Figure 5. In addition, the Bluetooth manual operator may also to the Bluetooth electromagnetic flow meter, equipment and so on Bluetooth temperature transmitting instrument carry on the operation.

5 Conclusions

After the scene testing, this article designs a Bluetooth module that is stable property, easy to operate, usable, anti-interference ability, upgrade software according to the need, can insert in the field apparatus to replace the electric cable effectively, to carry on the wireless communication, extended the tradition industrial control bus, has provided one new networking method for the industry monitoring network.

Acknowledgements

Thanks all my colleagues and thanks professor Wang Ping, thanks everyone.

References