

High-Speed Montgomery Modular Multiplication Using
High-Radix Systolic Multiplier

ZHANG Rui, He Debiao, CHEN Jianhua, HU Jin

School of Mathematics & Statistics, Wuhan University, Wuhan, China

e-mail: zhangrui_ecc@163.com

Abstract: A new high-radix systolic multiplier architecture is presented for Montgomery modular multiplica-
tion. Using a radix 2w, an n-bit modular multiplication only takes about n/w+6 cycles. This leads to a com-
petitive ASIC implementation for RSA and Elliptic Curve Cryptography (ECC).

Keywords: public key cryptosystems; Montgomery algorithm; modular multiplication; systolic multiplier

1. Introduction

The RSA [1] and Elliptic Curve Cryptography (ECC)

[2,3] public-key cryptosystems play an important role in

information security. They are based on modular mathe-

matics and modular multiplication is the crucial opera-

tion for time and resources.

Montgomery algorithm [4] is widely used for hard-

ware implementation of modular multiplication. There

are different implementations of the algorithm for dif-

ferent application environment. The bitwise implemen-

tations appeared in [5-8] firstly. Then several high-radix

implementations for high-speed design were [9,10] pro-

posed.

Most Field Programmable Gate Arrays (FPGA) im-

plementations based systolic multiplier because FPGA

can offer multipliers embedded in the devices [12,14].

But for a very high-speed design, the Application Spe-

cific Integrated Circuits (ASICs) offer more advantages.

ASICs can operate at higher frequency. This is important

for high performance design.

In this work, a new ASIC implementation is presented

using high-radix systolic multiplier which takes the least

cycles for a modular multiplication. The rest of this paper

is organized as follows. In Section 2, the modified simple

Montgomery algorithm is introduced. Section 3 is a de-

tailed description of our proposed architecture. Results

are presented in Section 4. A concluding summary is

given in Section 5.

2. Algorithm Descriptions

For a modulus M and inputs A, B, it performs modular

multiplication to output S≡ABR-1(mod M) (R is a con-

stant of form 2n).

For n bit modulus M with GCD (M, 2) =1, define

2
n

e
w
    

and R=(2w)e, integers R-1 and M  are given by

(R*R-1)mod M=1 and (-M M )mod 2w=1, integer M
~

is given by M
~

=(M mod 2w)M and 4 M
~

<R, a con-

stant

MC=(M
~

+1)/2w = ,.mi{0,1, 2w-1}
3

0
(2)

e w i
ii

m



A high-radix version of Montgomery Algorithm is

[11]:

Algorithm 1: Radix 2w Simplified Version of the Mont-

gomery Algorithm

Input:

Multiplicand
1

0
(2)

e w i
ii

A a



  , ,

0A2

(1) 1{0,1,...2 1}, {0,1}w
i e ea a    

M
~

;

Multiplier

0
(2)

e w i
ii

B b


 
(1) {0,1,...2w

i eb  

,

11}, {0,1}, 0e eb  b    , 0B2 M
~

.

Constant
1

0
(2)

e w i
ii

MC m



  ,

(2) 2 1{0,1,...2 1}, 0w
i e e em m   m    , 0A2 M

~
;

Output: An integer Se+1 where Se+1ABR-1 (mod M) and

0 Se+1<2 M
~

Step 1: S0:=0;

Step 2: for i:=0 to e do

Step 2a: qi:=Simod 2w;

265 978-1-935068-06-8 © 2009 SciRes.

Proceedings of 2009 Conference on Communication Faculty

Step 2b: Si+1:=Si/2
w+qi*MC+bi*A.

end for

Compared with original Montgomery Algorithm, Al-

gorithm 1 eliminates the direct data dependence between

the part sum and part quotient . It is required

only a simple truncation of . So the main operation of

the Algorithm 1 is simplified to Step 2b, i.e., two multi-

plications and a three-operand addition. Systolic multi-

plier architecture is proposed to perform this operation in

Section 3.

iS iq

iS

3. Hardware Design

The main design method of systolic multiplier is to split

the long integer operation into small segment operation

and combine the discrete result. The small function

module is often called Process Element (PE). A new

PE module is designed to split operation in algorithm

Step 2b.

3.1 Processing Element (PE)

To calculate the Si+1 in Algorithm 1 Step 2b, it can be

observed that only its least significant word is need for

next iteration. So it is not necessary to calculate each

word of Si+1’s in one cycle and it can be saved as some

redundant presentation. The CSA-staged multiplier is

usually used for such a form [13]. But the disadvantage

for CSA array is greater place & route effort for its ir-

regularity.

So a new Processing Element defined as:

Inputs: q, m, b, a, s_in, c_in, h_in. Here q, m, b, a,

s_in,h_in  [0,2w-1], c_in is one bit value.

Output: {c_o, h_o, s_o}=q*m+b*a+s_in+{c_in,h_in}

Here h_o, s_o  [0, 2w-1], c_o is only one bit 0 or 1, {}

denotes the combination of different parts. Figure 1

shows the PE’s function.

3.2 PE Array and Modular Multiplication Module

To implement the high-radix algorithm, a PE array struc-

ture was employed for minimal delay and high place &

route utilize ratio.

In this structure, there are process elements:

{PEk,k=0,…,e-1} described above and three row regiters:

{regs_in[k]}, {regh_in[k]}, {regc_in[k]}, {regc_in[k]},

Figure 1. Function of PE

Figure 2. Connections of PEk

k=0,…,e-1. Figure 2 shows the connections in PE and

between PEs (synchronous clock input not included).

Now we can rewrite the Algorithm 1 for PE array im-

plementation:

Algorithm 2:

Input: As Algorithm 1

Output: An integer S where SABR-1 (mod M) and 0

S<2 M
~

Step 1: regs_in[k]:=0, regh_in[k]=0, regc_in[k]=0 for

k=0,…,e-1; regq=0;

Step 2: for i:=0 to e do

Step 2a: regs_in[k]=s_ok+1; regh_in[k]=h_ok;

regc_in[k]=c_ok, for k=0,…,e-1; regq=s_o0;

end for

Step 3a: regs_in[k]=s_ok+1; regh_in[k]=h_ok; regc_in[k]=

c_ok, for k=0,…,e-1; regq=0;

Step 3b: regs_in[k]=s_ok+1; regh_in[k]=h_ok; regc_in[k]=

c_ok, for k=0,…,e-1; regq=s_o0;

Step 3c: S:={regs_in[e-1],….,regs_in[0],regq}+ {regh_in

[e-1],….regh_in[0],0}.

Figure 3 shows the PE array structure for implement-

ing Algorithm 2. The registers all initialized as 0. After

that, the outputs of each PE are saved in corresponding

registers at each cycle. The outputs h_ok, c_ok are feed

back to regh_in[k], regc_in[k]. The output s_ok is send to

regs_in[k-1] as a input of PEk-1; The output s_o0 is

266978-1-935068-06-8 © 2009 SciRes.

Proceedings of 2009 Conference on Communication Faculty

Figure 3. PE array for Modular Multiplication

saved in regq, which corresponds to the qi in Algorithm

1 Step 2b.

Actually, the Si+1 in Algorithm 1 Step 2b are presented

as its redundant form in Algorithm 2:

Si+1==s_o0+({c_o0,h_o0}+s_o1)(2
w)+({c_o1,h_o1}+s_o2)

(2w)2+…+({c_oe-1,h_oe-1})(2w)e-1

In Algorithm 2, the outputs c_ok (for k=0,…,e-1) of

PE array in Step3b are equal to 0 because the inputs be,

qe of PE array assigned to 0 when to execute Step3a. At

last, Step3c S=s_o0+({c_o0,h_o0}+s_o1)(2
w)+({c_o1,

h_o1}+s_o2)(2
w)2+…+({c_oe-1,h_oe-1})(2w)e-1={regs_in[

e-1],….,regs_in[0],regq}+{regh_in[e-1],….regh_in[0],0

}. The addition of last step can be completed with ad-

ders in 1~2 cycle according to the area and timing re-

quirement.

Furthermore, the inputs me-1, me-2 of PEe-1, PEe-2 are

equal to 0 and ae-1, be-1 is 0 or 1, so PEe-1, PEe-2 have a

simpler structure.

4. Results

If the last addition is completed in r cycle, an n-bit

modular multiplication only takes

5
n

r
w
     

the proposed architecture. This is the fastest result com-

pared with the similar architecture. Let

t=
n

w
 
  

Table 1 shows the clock cycles needed for an n-bit

modular multiplication and different structure.

The crucial module for timing and area is PE in the

PE array architecture. Using SMIC 0.18μm standard

cell library and worst operation condition, the Synop-

sys Design Compiler synthesized results are showed in

Table 2.

Table 1. Comparisons with previous works

Proposed implementation clock cycles
Ours about t+6
[12] about (3t+7)/2
[14] about 2(t+5)

Table 2. Synthesized result of PE using 0.18μm process library

Area(mm2) Max_Delay(ns)

8 0.011 3.3

16 0.054 4.2
32 0.189 5.0

w

The architecture also has simper connections between

each base unit. Using the place & route tool Encounter,

the place & route utilize ratio of modular multiplication

module ranges in 90%~95%. The DC’s ability of arith-

metic optimization contributes to the high utilize radio

without much handwork.

5. Conclusions and Future Work

To achieve a high speed modular multiplication design,

we have described an efficient implementation of Mont-

gomery algorithm. The architecture enables a high radix

up to 232, reducing the number of cycles for a modular

multiplication. Only about

6
n

w
    

clocks are taken for an n-bit modular multiplication using

the proposed architecture.

One direction in which this work should go is to sim-

plify the PE’s structure reducing the area and delay. The

other is to design an extendable structure for different

modular length in a PE array.

267 978-1-935068-06-8 © 2009 SciRes.

Proceedings of 2009 Conference on Communication Faculty

References
[1] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for ob-

taining digital signatures and public-key cryptosystems. Com-
munications of the ACM, Vol. 21, pp. 120-126, 1978.

[2] V. S. Miller. Use of Elliptic Curves in Cryptography. Proceed-
ings of Advances in Cryptography, pp. 417-426, 1986.

[3] N. Koblitz. Elliptic Curve Cryptosystems. Math Computation,
Vol.48, pp. 203-209, 1987.

[4] P. L. Montgomery. Modular Multiplication without Trial Divi-
sion. Math Computation, Vol. 44, pp. 519-521, 1985.

[5] C.D. Walter. Systolic Modular Multiplication. IEEE Transac-
tions on Computers, Vol. 42, pp. 376–378, 1993.

[6] K. Iwamura, T. Matsumoto, H. Imai. Montgomery Modular
Multiplication Method and Systolic Arrays Suitable for Modular
Exponentiation. Electronics and Communications in Japan, Part
3, Vol. 77, pp.40–51, 1994.

[7] P. Wang. New VLSI Architectures of RSA Public-key Crypto-
systems. In Proceedings IEEE International Symposium on Cir-
cuits and Systems, Vol. 3, pp. 2040–2043, 1997.

[8] A. Tiountchik. Systolic Modular Exponentiation via Montgom-
ery Algorithm. Electronics Letters, Vol. 34, pp. 874–875, 1998.

[9] T. Blum, C. Paar. Montgomery Modular Exponentiation on
Reconfigurable Hardware. In Proceedings 14th IEEE Sympo-
sium on Computer Arithmetic, pp. 70–77, 1999.

[10] T. Blum, C. Paar. High-Radix Montgomery Modular Exponen-
tiation on Reconfigurable Hardware. IEEE Transactions on
Computers, Vol. 50, pp. 759-764, 2001.

[11] H. Orup. Simplifying quotient determination in high-radix
modular multiplication. Proc. of the 12th Symposium on Com-
puter Arithmetic, 1995.

[12] C. McIvor, M. McLoone, J.V. McCanny. High-Radix Systolic
Modular Multiplication on Reconfigurable Hardware. Proceed-
ings of the 2005 IEEE International Conference on Field- Pro-
grammable Technology, pp.13 – 18, 2005.

[13] A. Cilardo, A. Mazzeo, L. Romano, G. P. Saggese. Carry-Save
Montgomery Modular exponentiation on Reconfigurable Hard-
ware. Proceedings of the Design and Test Europe (DATE) Con-
ference 2004, Vol. 3, pp. 206-211, 2004.

[14] S.H. Tang, K.S. Tsui, P.H.W. Leong. Modular exponentiation
using parallel multipliers. Proceedings of the 2003 IEEE Interna-
tional Conference on Field-Programmable Technology, pp. 52-
59, 2003.

268978-1-935068-06-8 © 2009 SciRes.

Proceedings of 2009 Conference on Communication Faculty

