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Abstract: A new high-radix systolic multiplier architecture is presented for Montgomery modular multiplica-
tion. Using a radix 2w, an n-bit modular multiplication only takes about n/w+6 cycles. This leads to a com-
petitive ASIC implementation for RSA and Elliptic Curve Cryptography (ECC).  
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1. Introduction 

The RSA [1] and Elliptic Curve Cryptography (ECC) 

[2,3] public-key cryptosystems play an important role in 

information security. They are based on modular mathe-

matics and modular multiplication is the crucial opera-

tion for time and resources. 

Montgomery algorithm [4] is widely used for hard-

ware implementation of modular multiplication. There 

are different implementations of the algorithm for dif-

ferent application environment. The bitwise implemen-

tations appeared in [5-8] firstly. Then several high-radix 

implementations for high-speed design were [9,10] pro-

posed.  

Most Field Programmable Gate Arrays (FPGA) im-

plementations based systolic multiplier because FPGA 

can offer multipliers embedded in the devices [12,14]. 

But for a very high-speed design, the Application Spe-

cific Integrated Circuits (ASICs) offer more advantages. 

ASICs can operate at higher frequency. This is important 

for high performance design.  

In this work, a new ASIC implementation is presented 

using high-radix systolic multiplier which takes the least 

cycles for a modular multiplication. The rest of this paper 

is organized as follows. In Section 2, the modified simple 

Montgomery algorithm is introduced. Section 3 is a de-

tailed description of our proposed architecture. Results 

are presented in Section 4. A concluding summary is 

given in Section 5. 

2. Algorithm Descriptions 

For a modulus M and inputs A, B, it performs modular 

multiplication to output S≡ABR-1(mod M) (R is a con-

stant of form 2n). 

For n bit modulus M with GCD (M, 2) =1, define 

2
n

e
w
    

 

and R=(2w)e, integers R-1 and M  are given by 

(R*R-1)mod M=1 and (-M M  )mod 2w=1, integer M
~

 

is given by M
~

=( M mod 2w)M and 4 M
~

<R, a con-

stant  

MC=( M
~

+1)/2w = ,.mi{0,1,   2w-1} 
3

0
(2 )

e w i
ii

m



A high-radix version of Montgomery Algorithm is 

[11]: 

Algorithm 1: Radix 2w Simplified Version of the Mont-

gomery Algorithm 

Input: 

Multiplicand 
1

0
(2 )

e w i
ii

A a



  , , 

0A2

( 1) 1{0,1,...2 1}, {0,1}w
i e ea a    

M
~

;  

Multiplier  

0
(2 )

e w i
ii

B b


 
( 1) {0,1,...2w

i eb  

,

11}, {0,1}, 0e eb  b    , 0B2 M
~

. 

Constant 
1

0
(2 )

e w i
ii

MC m



  , 

( 2) 2 1{0,1,...2 1}, 0w
i e e em m   m    , 0A2 M

~
; 

Output: An integer Se+1 where Se+1ABR-1 (mod M) and 

0 Se+1<2 M
~

 

Step 1: S0:=0; 

Step 2: for i:=0 to e do 

Step 2a: qi:=Simod 2w; 
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Step 2b: Si+1:=Si/2
w+qi*MC+bi*A. 

end for 

Compared with original Montgomery Algorithm, Al-

gorithm 1 eliminates the direct data dependence between 

the part sum  and part quotient . It is required 

only a simple truncation of . So the main operation of 

the Algorithm 1 is simplified to Step 2b, i.e., two multi-

plications and a three-operand addition. Systolic multi-

plier architecture is proposed to perform this operation in 

Section 3. 

iS iq

iS

3. Hardware Design 

The main design method of systolic multiplier is to split 

the long integer operation into small segment operation 

and combine the discrete result. The small function 

module is often called Process Element (PE). A new 

PE module is designed to split operation in algorithm 

Step 2b.  

3.1 Processing Element (PE) 

To calculate the Si+1 in Algorithm 1 Step 2b, it can be 

observed that only its least significant word is need for 

next iteration. So it is not necessary to calculate each 

word of Si+1’s in one cycle and it can be saved as some 

redundant presentation. The CSA-staged multiplier is 

usually used for such a form [13]. But the disadvantage 

for CSA array is greater place & route effort for its ir-

regularity. 

So a new Processing Element defined as: 

Inputs: q, m, b, a, s_in, c_in, h_in. Here q, m, b, a, 

s_in,h_in  [0,2w-1], c_in is one bit value. 

Output: {c_o, h_o, s_o}=q*m+b*a+s_in+{c_in,h_in} 

Here h_o, s_o  [0, 2w-1], c_o is only one bit 0 or 1, {} 

denotes the combination of different parts. Figure 1 

shows the PE’s function. 

3.2 PE Array and Modular Multiplication Module 

To implement the high-radix algorithm, a PE array struc-

ture was employed for minimal delay and high place & 

route utilize ratio. 

In this structure, there are process elements: 

{PEk,k=0,…,e-1} described above and three row regiters: 

{regs_in[k]}, {regh_in[k]}, {regc_in[k]}, {regc_in[k]}, 

 

Figure 1. Function of PE 

 

 

Figure 2. Connections of PEk 

 

k=0,…,e-1. Figure 2 shows the connections in PE and 

between PEs (synchronous clock input not included). 

Now we can rewrite the Algorithm 1 for PE array im-

plementation: 

Algorithm 2: 

Input: As Algorithm 1 

Output: An integer S where SABR-1 (mod M) and 0 

S<2 M
~

 

Step 1: regs_in[k]:=0, regh_in[k]=0, regc_in[k]=0 for 

k=0,…,e-1; regq=0; 

Step 2: for i:=0 to e do 

Step 2a: regs_in[k]=s_ok+1; regh_in[k]=h_ok; 

regc_in[k]=c_ok, for k=0,…,e-1; regq=s_o0; 

end for 

Step 3a: regs_in[k]=s_ok+1; regh_in[k]=h_ok; regc_in[k]= 

c_ok, for k=0,…,e-1; regq=0; 

Step 3b: regs_in[k]=s_ok+1; regh_in[k]=h_ok; regc_in[k]= 

c_ok, for k=0,…,e-1; regq=s_o0; 

Step 3c: S:={regs_in[e-1],….,regs_in[0],regq}+ {regh_in 

[e-1],….regh_in[0],0}.  

Figure 3 shows the PE array structure for implement-

ing Algorithm 2. The registers all initialized as 0. After 

that, the outputs of each PE are saved in corresponding 

registers at each cycle. The outputs h_ok, c_ok are feed 

back to regh_in[k], regc_in[k]. The output s_ok is send to 

regs_in[k-1] as a input of PEk-1; The output s_o0 is 
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Figure 3. PE array for Modular Multiplication 

 

saved in regq, which corresponds to the qi in Algorithm 

1 Step 2b. 

Actually, the Si+1 in Algorithm 1 Step 2b are presented 

as its redundant form in Algorithm 2: 

Si+1==s_o0+({c_o0,h_o0}+s_o1)(2
w)+({c_o1,h_o1}+s_o2)

(2w)2+…+({c_oe-1,h_oe-1})(2w)e-1 

In Algorithm 2, the outputs c_ok (for k=0,…,e-1) of 

PE array in Step3b are equal to 0 because the inputs be, 

qe of PE array assigned to 0 when to execute Step3a. At 

last, Step3c S=s_o0+({c_o0,h_o0}+s_o1)(2
w)+({c_o1, 

h_o1}+s_o2)(2
w)2+…+({c_oe-1,h_oe-1})(2w)e-1={regs_in[

e-1],….,regs_in[0],regq}+{regh_in[e-1],….regh_in[0],0

}. The addition of last step can be completed with ad-

ders in 1~2 cycle according to the area and timing re-

quirement. 

Furthermore, the inputs me-1, me-2 of PEe-1, PEe-2 are 

equal to 0 and ae-1, be-1 is 0 or 1, so PEe-1, PEe-2 have a 

simpler structure.  

4. Results 

If the last addition is completed in r cycle, an n-bit 

modular multiplication only takes  

5
n

r
w
     

 

the proposed architecture. This is the fastest result com-

pared with the similar architecture. Let  

t=
n

w
 
  

 

Table 1 shows the clock cycles needed for an n-bit 

modular multiplication and different structure. 

The crucial module for timing and area is PE in the 

PE array architecture. Using SMIC 0.18μm standard 

cell library and worst operation condition, the Synop-

sys Design Compiler synthesized results are showed in 

Table 2. 

Table 1. Comparisons with previous works 

Proposed implementation clock cycles 
Ours about t+6 
[12] about (3t+7)/2 
[14] about 2(t+5) 

 
Table 2. Synthesized result of PE using 0.18μm process library 

 

Area(mm2) Max_Delay(ns) 

8 0.011 3.3 

16 0.054 4.2 
32 0.189 5.0 

w

 

The architecture also has simper connections between 

each base unit. Using the place & route tool Encounter, 

the place & route utilize ratio of modular multiplication 

module ranges in 90%~95%. The DC’s ability of arith-

metic optimization contributes to the high utilize radio 

without much handwork. 

5. Conclusions and Future Work 

To achieve a high speed modular multiplication design, 

we have described an efficient implementation of Mont-

gomery algorithm. The architecture enables a high radix 

up to 232, reducing the number of cycles for a modular 

multiplication. Only about  

6
n

w
    

 

clocks are taken for an n-bit modular multiplication using 

the proposed architecture.  

One direction in which this work should go is to sim-

plify the PE’s structure reducing the area and delay. The 

other is to design an extendable structure for different 

modular length in a PE array. 
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