Energy and Power Engineering, 2009, 116-121
doi:10.4236/epe.2009.12018 Published Online November 2009 (http://www.scirp.org/journal/epe)
Copyright © 2009 SciRes EPE
Study on Lignite-Blended Burning Technology in
the 1025t/h Bituminous Boiler
Jinfeng MA1, Jingxing WU2, Tianshu ZHOU2, Jie LENG2, Chong JIANG2
1Shenyang Engineering Institute, Shenyang,China
2Northeast Electric Power Research Institute Co., Ltd., Shenyang, China
Email: majf 69@yahoo.com.cn
Abstract: Due to a serious shortage of the coal in Tonghua, a retrofit solution of mixing warm flue gas ex-
tracted from reversing chamber into the coal pulverizing system and cold air into the hot air coal pulverizing
system is proposed so as to reduce oxygen content. At the end of the pulverizing system and medium tem-
perature of the conveying system, dual-channel combustion burner is transformed into horizontal bias com-
bustion burner. The measurement results show that 50% ratio of lignite blended in the 1025t/h bituminous
boiler is feasibility. It is also an important technology to reduce NOx pollutant emission.
Keywords: coal pulverizing system, blended coal burning, lignite, warm flue gas, explosion prevention, dry-
ing capacity
1.
为拓宽燃范围,内许多究单开展了燃煤
掺烧的究工作[1-3]现在储式粉系烟煤锅
炉中大比例掺烧褐煤,文献[4,5]采用锅炉转向室抽
取中温烟掺制粉统的造技,在 200MW
组烟煤炉上功实了大例掺褐煤。
目前通化区煤源应严重足,江发电责任
有限公司 2×1025t/h 锅炉设计种属劣质烟
煤,挥发分和热值较低如果直接掺烧褐,制粉
系统爆炸燃烧损问题最突出。为大限
烧褐煤,文采取转向室抽炉烟掺制粉系
、热风送粉系统中改造方案以降低
制粉系统端氧量及送系统的温提高
粉系统防爆干燥力;将双粉燃烧改造为
水平浓淡燃烧保护燃烧进行了改
试验究。
2. 设备概况
浑江发责任限公司 1炉为界压力自
环固态排渣炉,型号SG-1025/17.5-M889。采
用中储式热风送粉制系统,配置 4钢球磨煤机。
采用四角切圆燃烧式,燃烧布置4
3有大油枪
12800mm 深度11890mm,炉
线标高 58000mm热器包墙、低
过热器、隔屏后屏及高过热器组成。热器
热器热器成。
热器井后部
热器。在热器热器的烟方布
尾部竖井交错布置
器、级空气预热器、下级省空气预
热器过热蒸汽采用Ⅱ级喷式,
热器温采用烟挡板式。
3. 改造方案
3.1 制粉系统改造方案
在中储式粉系统中炉烟统,粉系
统中送风口引入的作为
1所示中温炉烟左右 2引至前,2
4台磨机,12Cr1MoV
根据相关试验制粉系统末端端氧量低
16%,任件下林河褐煤不发爆炸。煤
分的直接影响系统能力参考
掺烧褐煤的试验数据煤粉取为 6%
粉系统计时选取为5%。设煤质掺烧 50
煤的煤质特性示1,中温烟系统及送粉系
J. F. MA ET AL.
Copyright © 2009 SciRes EPE
117
1. 中温统示意图
Figure 1. Piping arrangement diagram of warm flue gas system
1. 煤质主性表
Table 1. main characteristics of the coal
霍林河
Car /% 43.38 35.75 39.67
Har/% 2.49 2.63 2.6
Oar/% 5.3 9.67 7.76
Nar/% 0.7 0.71 0.71
Sar/% 0.41 0.34 0.37
Mar/% 6.02 29.29 17.66
Aar/% 41.7 21.61 31.23
Vdaf /% 27.38 45.9 38.91
Qar,net/ kg
kg-1 16200
12780 14530
理论算结2,锅炉热力算部
3
由表 3算结可知,在 BMCR 条件下锅炉计
效率降低 2.24%在实际运,制系统
负荷下常只采用2~3 套运很少采用 4同时运
粉系统风量会减少掺烧褐煤后混
煤燃提高,机完全燃烧减少
际运中锅炉效率一步提高
J. F. MA ET AL.
Copyright © 2009 SciRes EPE
118
2. 中温炉及送系统算结果
Table 2. Calculation results of warm flue gas system and conveying system
算结
烟煤煤比例
煤粉(R90)/ %
抽取过量空气
一次/ %
空气干燥/ %
煤粉/ %
消耗/ t
h-1
理论空气/Nm3
h-1
煤机风量/ m3
h-1
中温炉烟占总的质/%
制粉系统末端氧容积份额/%
系统/ Pa
粉系统合物/
1:1
16
1.27
23
5
5
205
3.97
145779
5.4
13.9
659
90
3. 热力计结果
Table 3. Thermal calculation results
四台磨
设计煤种
BMCR
四台磨
掺烧 50褐煤
BMCR
煤机全停
掺烧 50褐煤
BMCR
台磨
掺烧 50褐煤
ECR
空气预热器/ t
h-1
烟温(未正)/
烟温(修正)/
器进烟温/
锅炉效率/%
/ t
h-1
/ t
h-1
1339.2
149
139
648
90.80
178.5
182.9
1451.5
180
171
660
88.56
202.5
207.5
1406.3
141
133
652
90.96
196.2
201.0
1312.4
171
161
643
89.08
183.1
187.6
2. 煤粉燃示意图
Figure 2. Diagram of combustion burner
J. F. MA ET AL.
Copyright © 2009 SciRes EPE
119
3.2. 燃烧器改造方案
燃烧计采用大速差燃烧
喷口布置对集中。烧褐煤的煤质
和燃能提高同时结焦倾因此
改为风布置燃烧四角安装角度
燃烧器水冷套燃烧层风室重
高度整全三次标高整二
标高同时设计参数提高一次
速等烧设2所示
燃烧设计
(1) 中温炉烟+热风++环送统。
(2) 一次采用成WR水平浓淡燃烧
一次V钝体,在 V钝体
回流吸高温烟起到稳作用。燃烧
一次采用布置三次嘴集布置
(3) 二次设计按“,分燃烧的原
进行和燃减少NOx
在燃烧器顶2,为动摆动
流旋
二次射流旋减少锅炉水平
左右两侧烟温偏差
4. 中温炉烟系统投运试验
4.1. 抽热炉烟试验结果
改造的实际效,现备安装完
进行煤机额定出力温炉烟试验
验过炉烟挡板持全开,通煤机入
口负压调中温炉烟量以及制粉系统末端氧量
机入口负制粉系统末端氧量、抽取烟
线如34所示
1100 1200 1300 1400 1500 1600
14.0
14.5
15.0
15.5
16.0
16.5
17.0
粉系 /%
/Pa
D 粉系
C 粉系
3. 磨煤机力与粉系末端氧量系图
Figure 3. Interrelation between oxygen content at the end
1100 1200 1300 1400 1500 1600
50000
55000
60000
65000
70000
75000
80000
85000
/m
3
.h
-1
/Pa
D
C
4. 磨煤机力与取烟量关系图
Figure 4. Interrelation between flue gas flow rate
J. F. MA ET AL.
Copyright © 2009 SciRes EPE
120
4. NOx 排放量结果
Table 4. The NOx emissions results
33%比例褐煤 50%比例褐煤
机组负荷/ MW 209 211 213 211
空气预器出氧量/% 6.5 6.2 6.8 6.5
空气预器出NOx 体积浓度/ppm 199.4 183 227 195.3
算后器出NOx体积浓度/ ppm 205.6 186 239.8 202.2
空气预器出NOx 的质 量浓度/ mg
Nm-3 421.5 381.2 491.6 414.5
降低/% 9.6 15.7
中温炉烟循环/% 6 7
3试验数据表粉系统末端氧量
煤机入口负趋势CD
粉系统常运口负1300Pa 左右
末端量低16%足了粉系统的防爆要求
4试验数据表机入口负提高
抽取的中炉烟逐渐煤机
制粉系统燥出力试验煤机
度均能制在 60上。改造炉的防爆
干燥力提高
4.2. NOX排放试验结果
燃煤电NOx技术主要空气燃烧
技术技术气再环以及
SNCR SCR [6-10]在锅转向抽取温炉烟
掺入制粉统实现了烟气再循环用,将双煤粉
燃烧造为平浓淡燃烧实现了分烧。
文在浑江发电责有限公司 1锅炉上进行
改造NOX试验设在空气预器出
4为掺烧33%50%比例褐煤NOX放测
4中的改造NOx量浓
度均低文献[11]3段规最高
量浓度450 -3
Nmmg锅炉掺烧 33%褐煤
中温炉烟系统NOx 浓度
421.5 -3
Nmmg381.2 -3
Nmmg比前降低
9.6%锅炉掺烧 50%例褐煤温炉系统
NOx 量浓度491.6 -3
Nmmg
414.5 -3
Nmmg比前降低15.7%
掺烧褐煤,炉
降低减少力型NOX炉烟作为一次
风进燃烧降低了燃烧浓度
制煤燃烧中燃NOx成。同时
粉燃烧造为浓淡燃烧一步减少了燃
NOx成,而减污染
5.
1锅炉向室取中炉烟入制系统
粉系统作为造技术,
1025t/h 锅炉储式粉系统的能力干燥力;
燃烧造为平浓淡燃烧解决了燃
问题了劣烟煤锅中大比掺烧褐
煤的
2平浓淡燃烧技术气再循环用的
影响降低NOx 因此中储制粉系
统烟煤锅掺烧褐的改技术种重
技术。
REFERENCES
[1] J. W. Shu, F. B. Meng, Q. L. Huang, et al., The calcula-
tion and selection of drying agents in connection with the
change of fuel for a boiler from brown coal to bituminous
coal, Journal of Engineering for Thermal Energy and
Power, Vol. 7, pp. 453456, 2001.
[2] J. Guo, R. Jiang, and H. C. Zeng, Formation of NOx
during blended coals combustion process and its com-
puter simulation, Power System Engineering, Vol. 10,
No. 2, pp. 5560, 1999.
[3] Y. H. Li, H. W. Chen, J. Z. Liu, et al., Numerical simula-
tion of blending coals combustion of 800 MW boiler,
J. F. MA ET AL.
Copyright © 2009 SciRes EPE
121
Proceedings of the CSEE, Vol. 22, No. 6, pp. 101104,
2002.
[4] J. X. Wu, H. G. Chen, J. F. Ma, et al., Feasibility study
on the hot flue gas mixture in coal pulverizing system of
200MW boiler, Electric Power, Vol. 39, No. 3, pp. 2225,
2006.
[5] J. F. Ma, J. X. Wu, T. S. Zhou, et al., Study on lignite
blended burning technology in the bin and feeder coal
pulverizing system, Journal of Power Engineering, Vol.
28, No. 1, pp. 1418, 2008.
[6] S. Miyamae, T. Kiga, H. Ikebe, K. Makino, et al., Low
NOx pulverized coal combustion technology for large
utility thermal power plant, Coal Combustion Science
and Technology of Industrial and Utility Application,
Hemisphere Publishing Corporation, New York, 1988.
[7] M. Berg and H. Bering, Development of a low-NOx
burner for pulverized- coal combustion and retrofitting of
a full-scale power plant boiler, Proceedings of the 2
nd
International Symposia on Coal Combustion, China Ma-
chine Press, Beijing, 1991.
[8] E. Troconi, L. Lietti, P. Forzatti, et al., Experimental and
theoretical investigation of the dynamics of the SCR-
DeNOx reaction, Chemistry Science, Vol. 51, No. 11, pp.
29652970, 1996.
[9] C. G. Yin, S. Cailat, and J. Harion, Investigation of flow,
combustion, heat-transfer and emission from a 609MW
utility tangentially fired pulverized-coal boiler, Fuel, Vol.
81, No. 8, pp. 9971006, 2002.
[10] M. Falcite, S. Pasini, and L. Tognotti, Modeling paractical
combustion systems and predicting NOx emission with an
integrated CFD based approach, Computers and Chemi-
cal Engineering, Vol. 26, No. 9, pp. 11711183, 2002.
[11] Fossil-fuel Power Plant New Atmospheric Pollutant
Emission Standard, GB13223-2003, Electric Power Press,
Beijing, China, 2003.