D. BANERJEE

Copyright © 2011 SciRes. JQIS

126

whose extensive study will be of ample interest in future.

5. Acknowledgements

This work has been partly supported by The Abdus Sa-

lam International Center for Theoretical Physics, Trieste,

Italy during the visit as Regular associate.

6. References

[1] M. V. Berry, “Quantal Phase Factor Accompanying Adi-

abatic Changes,” Proceedings of the Royal Society A, Vol.

392, No. 1802, 1984, pp. 45-57.

doi:10.1098/rspa.1984.0023

[2] Y. Aharonov and J. S. Anandan, “Phase Change during a

Cyclic Quantum Evolution,” Physical Review Letters,

Vol. 58, No. 16, 1987, pp. 1593-1596.

doi:10.1103/PhysRevLett.58.1593

[3] V. Vedral, “Geometric Phase and Topological Quantum

Computation,” Physics, Vol. 1, 2002, pp. 1-24.

[4] R. W. Ogburn and J. Preskill, “Lecture Notes in Com-

puter Science,” Springer-Verlag, New York, 1999.

[5] A. Y. Kiteav, “Fault Tolarent Quantum Computation by

Anyons,” Annals of Physics, Vol. 303, No. 1, 2003, pp.

2-30.

[6] H. K. Lo and J. Preskill, “Non-Abelian Vortices and Non-

Abelian Statistics,” Physical Review D, Vol. 48, No. 10,

1993, pp. 4821-4834.

[7] D. V. Averin and V. J. Goldman, “Quantum Computation

with Quasiparticles of the Fractional Quantum Hall Ef-

fect,” Solid State Communications, Vol. 121, No. 1, 2001,

pp. 25-28. doi:10.1016/S0038-1098(01)00447-1

[8] A. S. Goldhaber and J. K. Jain, “Characterization of Frac-

tional-Quantum-Hall-Effect Quasiparticles,” Physics Let-

ters A, Vol. 199, No. 3-4, 1995, pp. 267-273.

doi:10.1016/0375-9601(95)00101-8

[9] D. Arovas, J. R. Schrieffer and F. Wilczek, “Fractional

Statistics and Quantum Hall Effect,” Physical Review Let-

ters, Vol. 53, No. 7, 1984, pp. 722-723.

doi:10.1103/PhysRevLett.53.722

[10] V. Vedral, “Entanglement in Second Quantization For-

malism,” Central European Journal of Physics, Vol. 1,

No. 2, 2003, pp. 289-306.

[11] D. Banerjee and P. Bandyopadhyay, “Qubit Rotation and

Berry Phase,” Physica Scripta, Vol. 73, No. 6, 2006, pp.

571-576. doi:10.1088/0031-8949/73/6/008

[12] D. Banerjee, “Qubit Rotation in QHE,” Physica Scripta,

Vol. 77, No. 6, 2008, pp. 065701-065705.

doi:10.1088/0031-8949/77/06/065701

[13] A. Ekert, M. Ericson, V. Vedral, et al., “Geometric Quan-

tum Computation,” Journal of Modern Optics, Vol. 47,

No. 14-15, 2000, pp. 2501-2513.

[14] R. A. Bertlmann, K. Durstberger, Y. Hasegawa and B. C.

Heismayr, “Berry Phase in Entangled Systems: An Ex-

periment with Single Neutrons,” Physical Review A, Vol.

69, No. 3, 2004, pp. 032112-032118.

doi:10.1103/PhysRevA.69.032112

[15] R. Prange and S. Girvin, “The Quantum Hall Effect,”

Spinger-Verlag, New York, 1987.

[16] J. K. Jain, “The Theory of Fractional Quantum Hall Ef-

fect,” Physical Review B, Vol. 41, No. 11, 1990, pp. 7653-

7665. doi:10.1103/PhysRevB.41.7653

[17] D. Banerjee, “Topological Aspects of Shift in Hierarchies

of the Fractional Quantum Hall Effect,” Physical Review

B, Vol. 58, No. 8, 1998, pp. 4666-4671.

[18] F. D. M. Haldane, “Fractional Statistics in Arbitrary Di-

mensions: A Generalization of the Pauli Principle,” Phy-

sical Review Letters, Vol. 67, No. 8, 1991, pp. 937-940.

doi:10.1103/PhysRevLett.67.937

[19] D. Banerjee, “Edge Current of FQHE and Aharonov-

Bohm Type Phase,” Physica Scripta, Vol. 71, No. 6, 2005,

pp. 656-660. doi:10.1088/0031-8949/71/6/014

[20] D. Banerjee, “Topological Aspects of Phases in Frac-

tional Quantum Hall Effect,” Physics Letters A, Vol. 269,

No. 2-3, 2000, pp. 138-143.

doi:10.1016/S0375-9601(00)00251-6

[21] S. Stenholm and K. Suominen, “Quantum Approach to

Informatics,” John Wiley and Sons, Inc., Hoboken, 2005.