
S. SARKAR
Copyright © 2011 SciRes. JQIS
110
[13] L. C. Venuti, et al., “Long-Distance Entanglement in
Spin System,” Physical Review Letters, Vol. 96, No. 24,
2006, pp. 247206-247209.
doi:10.1103/PhysRevLett.96.247206
[25] Q. Niu and D. J. Thouless, “Quantized Adiabatic Charge
Transport in the Presence of Substrate Disorder and
Many-Body Interaction,” Journal of Physics A: Mathe-
matical and General, Vol. 17, No. 12, 1984, pp. 2453-
2462. doi:10.1088/0305-4470/17/12/016
[14] O. Romero-Isart, K. Eckert and A. Sanpera, “Quantum
State Transfer in Spin-1 Chain,” Physical Review A, Vol.
75, No. 5, 2007, pp. 050303-050306.
doi:10.1103/PhysRevA.75.050303
[26] M. V. Berry, “Quantal Phase Factor Accompaying Adia-
batic Charges,” Proceedings of the Royal Society A, Vol.
392, No. 1802, 1984, pp. 45-57.
doi:10.1098/rspa.1984.0023
[15] K. Eckert, O. Romero-Isart and A. Sanpera, “Efficient
Quantum State Transfer in Spin Chain via Adiabatic Pas-
sage,” New Journal of Physics, Vol. 9, No. 5, 2007, pp.
155-173. doi:10.1088/1367-2630/9/5/155
[27] R. Shindou, “Quantum Spin Pump in S = 1/2 Antiferro-
magnetic Chain Holonomy of Phase Operators in Sine-
Gordon Theory,” Journal of the Physics Society Japan,
Vol. 74, No. 4, 2005, pp. 1214-1223.
doi:10.1143/JPSJ.74.1214
[16] V. Srinivasa, J. Levy and C. S. Hellberg, “Flying Spin
Qubit,” Exchange Organizational Behavior Teaching Jour-
nal, 2006, pp. 1-13. [28] J. E. Avron, A. Raveh and B. Zur, “Adiabatic Quantum
Transport in Multiple Connected System,” Reviews of
Modern Physics, Vol. 60, No. 4, 1988, pp. 873-915.
doi:10.1103/RevModPhys.60.873
[17] M. J. Hartmann, et al., “Excitations and Entanglement
Transfer versus Spectral Gap,” New Journal of Physics,
Vol. 8, No. 6, 2006, pp. 94-108.
doi:10.1088/1367-2630/8/6/094 [29] T. Giamarchi, “Quantum Physics in One Dimension,”
Clarendon Press, London, 2004.
[18] L. Amico, et al., “Dynamics of Entanglement in One-
Dimensional Spin Systems,” Physical Review A, Vol. 69,
No. 2, 2004, pp. 022304-022327.
doi:10.1103/PhysRevA.69.022304
[30]
1
1sin
2ππ
n
z
nxn n
Sx x
·
field corresponds
to the quantum fluctuations (boson) of spin.
[19] C. Di Franco, et al., “Perfect State Transfer of Spin Chain
without State Initialization,” Physical Re vie w Lett ers, Vol.
101, No. 23, 2008, pp. 230502-230503.
doi:10.1103/PhysRevLett.101.230502
[31] P. Sharma and C. Chamon, “Quantum Pump for Spin and
Charge Transport in a Luttinger Liquid,” Physical Review
Letters, Vol. 87, No. 9, 2001, pp. 96401-96405.
doi:10.1103/PhysRevLett.87.096401
[20] F. Plastina, et al., “Local Control of Entanglement in Spin
Chain,” Physical Review Letters, Vol. 99, No. 17, 2007,
pp. 177210-177213. doi:10.1103/PhysRevLett.99.177210
[32] S. Sarkar and C. D. Hu, “Quantum Spin Pumping at a
Fractionally Quantized Magnetization State for a System
with Competing Exchange Interactions,” Physical Review
B, Vol. 77, No. 6, 2008, pp. 064413-064418.
doi:10.1103/PhysRevB.77.064413
[21] M. Horodecki, et al., “General Teleporation Channel,
Singlet Fraction and Quasidistillation,” Physical Review
A, Vol. 60, No. 3, 1999, pp. 1888-1898. [33] C. H. Bennett, et al., “Mixed State Entanglement and
Quantum Error Correction,” Physical Review A, Vol. 54,
No. 5, 1996, pp. 3824-3851.
doi:10.1103/PhysRevA.54.3824
[22] A. Bayat and S. Bose, “Information Transferring Ability
of the Different Phases of a Finite XXZ Spin Chain,”
Physical Review A, Vol. 81, No. 1, 2008, pp. 1-11.
[34] E. Schrodinger, “Discussion of Probability Relation be-
tween Separated System,” Mathematical Proceedings of
the Cambridge Philosophical Society, Vol. 31, No. 4, 1935,
pp. 555-563.
[23] C. F. Hirjibehedin, et al., “Spin Coupling in Engineered
Atomic Structures,” Science, Vol. 312, No. 5776, 2006,
pp. 1021-1025. doi:10.1126/science.1125398
[24] D. J. Thouless, “Quantization of Particle Transport,” Phy-
sical Review B, Vol. 27, No. 10, 1983, pp. 6083-6087.
doi:10.1103/PhysRevB.27.6083
[35] J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox,”
Physics, Vol. 1, No. 3, 1964, pp. 195-202.