M. SAFARI ET AL.
238
Figure 2. For the second extended model of shallow water
wave equation with the first initial condition (32) of Equa-
tion (16), when c = 2.
21
3
11 1
1
2
0
11 1
0
311
1
3
,,
,,
3,
,, ,
3d
,,
6, d
t
x
uxtuxt
ux uxux
ux
x
ux uux
xx
ux ux
ux xx
,
(34)
In Figure 2 we can see the 3-D result of second ex-
tended model of shallow water wave equation by VIM.
5. Acknowledgements
In this paper, He’s variational iteration method has been
successfully applied to find the solution of two extended
model equations for shallow water. The obtained results
were showed graphically it is proved that He’s varia-
tional iteration method is a powerful method for solving
these eq uatio ns . I n our work ; w e use d th e Map l e P ack ag e
to calculate the functions obtained from the He’s varia-
tional iteration method.
6. References
[1] P. A. Clarkson and E. L. Mansfield, “On a Shall ow Wate r
Wave Equation,” Nonlinearity, Vol. 7, No. 3, 1994, pp.
975-1000. doi:10.1088/0951-7715/7/3/012
[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur,
“The Inverse Scattering Transform-Fourier Analysis for
Nonlinear Problems,” Studies in Applied Mathematics,
Vol. 53, 1974, pp.249-315.
[3] R. Hirota and J. Satsuma,” Soliton Solutions of Model
Equations for Shallow Water Waves,” Journal of the
Physical Society of Japan, Vol. 40, No. 2, 1976, pp. 611-
612. doi:10.1143/JPSJ.40.611
[4] J. H. He, “Some Asymptotic Methods for Strongly Non-
linear Equations,” International Journal of Modern Phy-
sics B, Vol. 20, No. 10, 2006, pp. 1141-1199.
doi:10.1142/S0217979206033796
[5] J. H. He, “Approximate Analytical Solution for Seepage
Flow with Fractional Derivatives in Porous Media,” Com-
puter Methods in Applied Mechanics and Engineering,
Vol. 167, No. 1-2, 1998, pp. 57-68.
doi:10.1016/S0045-7825(98)00108-X
[6] J. H. He, “Variational Iteration Method for Autonomous
Ordinary Differential Systems,” Applied Mathematics and
Computation, Vol. 114, No. 2-3, 2000, pp. 115-123.
doi:10.1016/S0096-3003(99)00104-6
[7] J. H. He and X. H. Wu, “Construction of Solitary Solu-
tion and Compacton-Like Solution by Variational Itera-
tion Method,” Chaos Solitons & Fractals, Vol. 29, No. 1,
2006, pp. 108-113. doi:10.1016/j.chaos.2005.10.100
[8] J. H. He, “A New Approach to Nonlinear Partial Differ-
ential Equations”, Communications in Nonlinear Science
and Numerical Simulation, Vol. 2, No. 4, 1997, pp. 203-
205. doi:10.1016/S1007-5704(97)90007-1
[9] J. H. He, “Variational Iteration Method—A Kind of Non-
linear Analytical Technique: Some Examples,” Interna-
tional Journal of Nonlinear Mechanics, Vol. 34, No. 4,
1999, pp. 699-708. doi:10.1016/S0020-7462(98)00048-1
[10] J. H. He, “A Generalized Variational Principle in Micro-
morphic Thermoelasticity,” Mechanics Research Commu-
nications, Vol. 32, No. 1, 2005, pp. 93-98.
doi:10.1016/j.mechrescom.2004.06.006
[11] D. D. Ganji, M. Jannatabadi and E. Mohseni, “Applica-
tion of He’s Variational Iteration Method to Nonlinear
Jaulent-Miodek Equations and Comparing It with ADM,”
Journal of Computional and Applied Mathematics, Vol.
207, No. 1, 2007, pp. 35-45.
[12] D. D. Ganji, E. M. M. Sadeghi and M. Safari, “Appli-
cation of He’s Variational Iteration Method and Ado-
mian’s Decomposition Method Method to Prochhammer
Chree Equation,” International Journal of Modern Phy-
sics B, Vol. 23, No. 3, 2009, pp. 435-446.
doi:10.1142/S0217979209049656
[13] M. Safari, D. D. Ganji and M. Moslemi, “Application of
He’s Variational Iteration Method and Adomian’s De-
composition Method to the Fractional KdV-Burgers-
Kuramoto Equation,” Computers and Mathematics with
Applications, Vol. 58, No. 11-12, 2009, pp. 2091-2097.
[14] M. Safari, D. D. Ganji and E. M. M. Sadeghi, “Appli-
cation of He’s Homotopy Perturbation and He’s Varia-
tional Iteration Methods for Solution of Benney-Lin
Equation,” International Journal of Computer Mathema-
tics, Vol. 87, No. 8, pp. 1872-1884.
doi:10.1080/00207160802524770
Copyright © 2011 SciRes. AJCM