A. BORHANIFAR ET AL.

224

ical systems. Furthermore, our solutions are in m

general forms, and many known solutions to these equa-

he aid of Ma-

ple, we have assured the correctness of the obtained so-

k into

solutions for a class of localized structures existing in the

physore

tions are only special cases of them. With t

lutions by putting them bacthe original equation.

We hope that they will be useful for further studies in

applied sciences. According to Case 5, present method

failed to obtain the general solution of gKP for =1,n

and =2,n therefore the authors hope to extend the

GG

-expansion method to solve these especial type

of gKP.

5. Acknowledgments

This work is partially supported by Grant-in-Aid from

the University of Mohaghegh Ardabili, Ardabil, Iran.

6. References

[1] G. T. Liu and T. Y. Fan, “New Applications of Devel-

oped Jacobi Elliptic Function Expansion Methods,” Phy-

sics Letters A, Vol. 345, No. 1-3, 2005, pp. 161-166.

doi:10.1016/j.physleta.2005.07.034

[2] . J. Ablowitz and H. Segur, “Solitons and Inverse Scat-

tering Transform,” SIAM, Philadelphia, 1981.

doi:1

M

0.1137/1.9781611970883

ethod in Soliton Theory,” Cam-

ambridge, 2004.

[3] R. Hirota, “The Direct M

bridge University Press, C

[4] M. L. Wang, “Exact Solutions for a Compound KdV-Burg-

er s Equation,” Physics Letters A, Vol. 213, No. 5-6, 1996,

pp. 279-287. doi:10.1016/0375-9601(96)00103-X

[5] J. H. He, “The

linear Oscillat Homotopy Perturbation Method for Non-

ors with Discontinuities,” Applied Mathe-

matics and Computation, Vol. 151, No. 1, 2004, pp. 287-

292. doi:10.1016/S0096-3003(03)00341-2

[6] Z. Y. Yan, “An Improved Algebra Method and Its Ap-

plications in Nonlinear Wave Equations,” Chaos Solito

& Fractals, Vol. 21, No. 4, 2004, ppns

. 1013-1021.

doi:10.1016/j.chaos.2003.12.042

[7] G. W. Bluman and S. Kumei, “Symmetries and

tial Equations,” Springer-Verlag Differen-

, New York, 1989.

994.

ca

r Partial Dif-

ional Nizhnik-Novikov-

.064

[8] G. Adomian, “Solving Frontier Problems of Physics: The

Decomposition Method,” Kluwer, Boston, 1

[9] A. Borhanifar, H. Jafari and S. A. Karimi, “New Solitons and

Periodic Solutions for the Kadomtsev-Petviashvili Equa-

tion,” The Journal of Nonlinear Science and Applitions,

Vol. 1, No. 4, 2008, pp. 224-229.

[10] H. Jafari, A. Borhanifar and S. A. Karimi, “New Solitary

Wave Solutions for the Bad Boussinesq and Good Bous-

sinesq Equations,” Numerical Methods fo

ferential Equations, Vol. 25, No. 5, 2000, pp. 1231-1237.

[11] A. Borhanifar, M. M. Kabir and L. M. Vahdat, “New Pe-

riodic and Soliton Wave Solutions for the Generalized Zak-

harov System and (2 + 1)-Dimens

Veselov Sy stem,” Chaos Solitons & Fractals, Vol. 42, No.

3, 2009, pp. 1646-1654. doi:10.1016/j.chaos.2009.03

thod for

[12] A. Borhanifar and M. M. Kabir, “New Periodic and Soli-

ton Solutions by Application of Exp-Function Me

Nonlinear Evolution Equations,” Journal of Computa-

tional and Applied Mathematics, Vol. 229, No. 1, 2009,

pp. 158-167. doi:10.1016/j.cam.2008.10.052

[13] S. A. El Wakil, M. A. Abdou and A. Hendi, “New Peri-

odic Wave Solutions via Exp-Function Method,” Physics

Letters A, Vol. 372, No. 6, 2008, pp. 830-840.

doi:10.1016/j.physleta.2007.08.033

[14] A. Boz and A. Bekir, “Application of Exp-Function Me-

thod for (3 + 1)-Dimensional Nonlinear Evolution Equa-

tions,” Computers & Mathematics with Applications, Vol.

56, No. 5, 2000, pp. 1451-1456.

[15] H. Zhao and C. Bai, “New Doubly Periodic and Multiple

Soliton Solutions of the Generalized (3 + 1)-Dimensional

Kadomtsev-Petviashvilli Equation with Variable Coeffi-

cients,” Chaos Solitons & Fractals, Vol. 30, No. 1, 2006,

pp. 217-226. doi:10.1016/j.chaos.2005.08.148

[16] M. A. Abdou, “Further Improved F-Expansion and New

Exact Solutions for Nonlinear Evolution Equations,” Non-

linear Dynamics, Vol. 52, No. 3, 2008, pp. 277-288.

doi:10.1007/s11071-007-9277-3

[17] M. Wang, X. Li and J. Zhang, “The (G'/G)-E

Method and Traveling Wave Solutioxpansion

ns of Nonlinear Evo-

lution Equations in Mathematical Physics,” Physics Let-

ters A, Vol. 372, No. 4, 2008, pp. 417-423.

doi:10.1016/j.physleta.2007.07.051

[18] J. Zhang, X. Wei and Y. J. Lu, “A Generalized (G'/G)-

Expansion Method and Its Applications,” Physics Letters

A, Vol. 372, No. , 2008, pp. 36-53.

doi:10.1016/j.physleta.2008.01.057

[19] A. Bekir, “Application of the (G'/G)-Expansion Method

for Nonlinear Evolution Equations,” Physics Letters A,

ons

Vol. 372, No. 19, 2008, pp. 3400-3406.

[20] A. Bekir and A. C. Cevikel, “New Exact Travelling Wave

Solutions of Nonlinear Physical Models,” Chaos Solit

& Fractals, Vol. 41, No. 4, 2008, pp. 1733-1739.

[21] E. M. E. Zayed and K. A. Gepreel, “Some Applications

of the (G'/G)-Expansion Met hod to Non -Linear Pa rtial Dif-

ferential Equations,” Applied Mathematics and Computa-

tion, Vol. 212, No. 1, 2009, pp. 1-13.

doi:10.1016/j.amc.2009.02.009

[22] D. D. Ganji and M. Abdollahzadeh, “Exact Traveling So-

lutions of Some Nonlinear Evolution Equation by (G'/G)-

Expansion Method,” Journal of Ma

Vol. 50, No. 1, 2009, Article ID: 013thematical Physics,

519.

doi:10.1063/1.3052847

[23] M. Wang, J. Zhang and X. Li, “Application of the (G'/G)-

Expansion to Travelling Wave Solutions of the Broerkaup

and the Approximate Long Water Wave Equations,” Ap-

plied Mathematics and Computation, Vol. 206, No. 1, 2008,

pp. 321-326. doi:10.1016/j.amc.2008.08.045

[24] L.-X. Li and M.-L.Wand, “The (G'/G)-Expansion Method

and Travelling Wave Solutions for a Higher-Order Non-

linear Schrdinger Equation,” Applied Mathematics and

Computation, Vol. 208, No. 2, 2009, pp. 440-445.

doi:10.1016/j.amc.2008.12.005

Copyright © 2011 SciRes. AJCM