
Role of Tat-Mediated PDZ Peptide Delivery in Pain Therapy599
tional Domains of Chemically Synthesized Human Im-
munodeficiency Virus Tat Trans-Activator Protein,” Cell,
Vol. 55, No. 6, 1988, pp. 1179-1188.
doi:10.1016/0092-8674(88)90262-0
[5] F. Perez, A. Joliot, E. Bloch-Gallego, A. Zahraoui, A.
Triller and A. Prochiantz, “Antennapedia Homeobox as a
Signal for the Cellular Internalization and Nuclear Ad-
dressing of a Small Exogenous Peptide,” Journal of Cell
Science, Vol. 102, Part 4, 1992, pp. 717-722.
[6] P. E. Thoren, D. Persson, M. Karlsson and B. Norden,
“The Antennapedia Peptide Penetratin Translocates
across Lipid Bilayers—The First Direct Observation,”
FEBS Letters, Vol. 482, No. 3, 2000, pp. 265-268.
doi:10.1016/S0014-5793(00)02072-X
[7] K. Fujimoto, R. Hosotani, Y. Miyamoto, R. Doi, T. Ko-
shiba, A. Otaka, N. Fujii, R. D. Beauchamp and M. Ima-
mura, “Inhibition of pRb Phosphorylation and Cell Cycle
Progression by an Antennapedia-p16(INK4A) Fusion
Peptide in Pancreatic Cancer Cells,” Cancer Letters, Vol.
159, No. 2, 2000, pp. 151-158.
doi:10.1016/S0304-3835(00)00536-X
[8] P. A. Wender, J. B. Rothbard, T. C. Jessop, E. L. Kreider
and B. L. Wylie, “Oligocarbamate Molecular Transport-
ers: Design, Synthesis, and Biological Evaluation of a
New Class of Transporters for Drug Delivery,” Journal of
the American Chemical Society, Vol. 124, No. 45, 2002,
pp. 13382-13383. doi:10.1021/ja0275109
[9] S. Uemura, J. B. Rothbard, H. Matsushita, P. S. Tsao, C.
G. Fathman and J. P. Cooke, “Short Polymers of Arginine
Rapidly Translocate into Vascular Cells: Effects on Nitric
Oxide Synthesis,” Circulation Journal, Vol. 66, 2002, pp.
1155-1160. doi:10.1253/circj.66.1155
[10] J. B. Rothbard, E. Kreider, C. L. Van Deusen, L. Wright,
B. L. Wylie and P. A. Wender, “Arginine-Rich Molecular
Transporters for Drug Delivery: Role of Backbone Spac-
ing in Cellular Uptake,” Journal of Medicinal Chemistry,
Vol. 45, No. 17, 2002, pp. 3612-3618.
doi:10.1021/jm0105676
[11] M. G. Garry, S. Malik, J. Yu, M. A. Davis and J. Yang,
“Knock down of Spinal NMDA Receptors Reduces
NMDA and Formalin Evoked Behaviors in Rat,” Neu-
roreport, Vol. 11, 2000, pp. 49-55.
doi:10.1097/00001756-200001170-00010
[12] J. Mao, D. D. Price, R. L. Hayes, J. Lu and D. J. Mayer,
“Differential Roles of NMDA and Non-NMDA Receptor
Activation in Induction and Maintenance of Thermal Hy-
peralgesia in Rats with Painful Peripheral Mononeuropa-
thy,” Brain Research, Vol. 598, No. 1-2, 1992, pp. 271-
278. doi:10.1016/0006-8993(92)90193-D
[13] K. Ren, J. L. Hylden, G. M. Williams, M. A. Ruda and R.
Dubner, “The Effects of a Non-Competitive NMDA Re-
ceptor Antagonist, MK-801, on Behavioral Hyperalgesia
and Dorsal Horn Neuronal Activity in Rats with Unilat-
eral Inflammation,” Pain, Vol. 50, No. 3, 1992, pp. 331-
344. doi:10.1016/0304-3959(92)90039-E
[14] F. Wei, G. D. Wang, G. A. Kerchner, S. J. Kim, H. M. Xu,
Z. F. Chen and M. Zhuo, “Genetic Enhancement of In-
flammatory Pain by Forebrain NR2B Overexpression,”
Nature Neuroscience, Vol. 4, 2001, pp. 164-169.
doi:10.1038/83993
[15] H. C. Kornau, L. T. Schenker, M. B. Kennedy and P. H.
Seeburg, “Domain Interaction between NMDA Receptor
Subunits and the Postsynaptic Density Protein PSD-95,”
Science, Vol. 269, No. 5231, 1995, pp. 1737-1740.
doi:10.1126/science.7569905
[16] K. S. Christopherson, B. J. Hillier, W. A. Lim and D. S.
Bredt, “PSD-95 Assembles a Ternary Complex with the
N-methyl-D-aspartic Acid Receptor and a Bivalent Neu-
ronal NO Synthase PDZ Domain,” Journal of Biological
Chemistry, Vol. 274, No. 39, 1999, pp. 27467-27473.
doi:10.1074/jbc.274.39.27467
[17] Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia,
A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson
and L. C. Cantley, “Recognition of Unique Carboxyl-
Terminal Motifs by Distinct PDZ Domains,” Science, Vol.
275, No. 5296, 1997, pp. 73-77.
doi:10.1126/science.275.5296.73
[18] N. L. Stricker, K. S. Christopherson, B. A. Yi, P. J.
Schatz, R. W. Raab, G. Dawes, D. E. Bassett Jr., D. S.
Bredt and M. Li, “PDZ Domain of Neuronal Nitric Oxide
Synthase Recognizes Novel C-Terminal Peptide Se-
quences,” Nature Biotechnology, Vol. 15, 1997, pp. 336-
342. doi:10.1038/nbt0497-336
[19] A. Ziegler and J. Seelig, “Interaction of the Protein Trans-
duction Domain of HIV-1 TAT with Heparan Sulfate:
Binding Mechanism and Thermodynamic Parameters,”
Biophysical Journal, Vol. 86, No. 1, 2004, pp. 254-263.
doi:10.1016/S0006-3495(04)74101-6
[20] M. Tyagi, M. Rusnati, M. Presta and M. Giacca, “Inter-
nalization of HIV-1 Tat Requires Cell Surface Heparan
Sulfate Proteoglycans,” Journal of Biological Chemistry,
Vol. 276, No. 5, 2001, pp. 3254-3261.
doi:10.1074/jbc.M006701200
[21] A. Ziegler, P. Nervi, M. Durrenberger and J. Seelig, “The
Cationic Cell-Penetrating Peptide CPP(TAT) Derived
from the HIV-1 Protein TAT Is Rapidly Transported into
living Fibroblasts: Optical, Biophysical, and Metabolic
Evidence,” Biochemistry, Vol. 44, No. 1, 2005, pp. 138-
148. doi:10.1021/bi0491604
[22] S. Console, C. Marty, C. Garcia-Echeverria, R. Schwen-
dener and K. Ballmer-Hofer, “Antennapedia and HIV
Transactivator of Transcription (TAT) ‘Protein Transduc-
tion Domains’ Promote Endocytosis of High Molecular
Weight Cargo upon Binding to Cell Surface Glycosami-
noglycans,” Journal of Biological Chemistry, Vol. 278,
No. 37, 2003, pp. 35109-35114.
doi:10.1074/jbc.M301726200
[23] S. M. Fuchs and R. T. Raines, “Pathway for Polyarginine
Entry into Mammalian Cells,” Biochemistry, Vol. 43, No.
9, 2004, pp. 2438-2444. doi:10.1021/bi035933x
[24] S. Futaki, “Oligoarginine Vectors for Intracellular Deliv-
ery: Design and Cellular-Uptake Mechanisms,” Biopoly-
mers, Vol. 84, No. 3, 2006, pp. 241-249.
doi:10.1002/bip.20421
[25] M. Lundberg, S. Wikstrom and M. Johansson, “Cell Sur-
Copyright © 2011 SciRes. JBNB