American Journal of Oper ations Research, 2011, 1, 305-311
doi:10.4236/ajor.2011.14035 Published Online December 2011 (http://www.SciRP.org/journal/ajor)
Copyright © 2011 SciRes. AJOR
305

,H -
-
-Accretive Operators and Generalized
Variational-Like Inclusions*
Rais Ahmad, Mohammad Dilshad
Department of Mat hematics, Aligarh Muslim University, Aligarh, India
E-mail: raisain_123@rediffmail.com, mdilshaad@gmail.com
Received August 17, 2011; revised September 20, 2011; acce pt ed September 30, 2011
Abstract
In this paper, we generalize
,H -accretive operator introduced by Zou and Huang [1] and we call it
,H -
-
-accretive operator. We define the resolvent operator associated with
,H -
-
-accretive
operator and prove its Lipschitz continuity. By using these concepts an iterative algorithm is suggested to
solve a generalized variational-like inclusion problem. Some examples are given to justify the definition of
,H -
-
-accretive operator.
Keywords:
,H -
-
-Accretive Operator, Variational-Like Inclusion, Resolvent Operator, Algorithm,
Convergence
1. Introduction
Variational inclusion problems have emerged as a po-
werful tool for solving a wide class of unrelated problems
occuring in various branches of physical, engineering,
pure and applied sciences in a unified and general frame
work.
In 2001, Huang and Fang [2] firstly introduced the
generalized -accretive mappings and gave the defini-
tion of resolvent operator for the generalized -accre-
tive mappings in Banach spaces. Also, they have shown
some properties of their resolvent operator. Since then,
Fang and Huang, Lan, Cho and Verma and others
introduced and studied several generalized operators
such as H-accretive,
mm
-H
-accretive and

,A
-ac-
cretive mappings. For example, see [3-16] and references
therein.
In 2008, Zou and Huang [1] introduced -accre-
tive operator, its resolvent operator and applied them to
solve a variational inclusion problem in Banach spaces.
In this paper, we generalized -accretive operator
to -

,H

,H

,H
-
-accretive operator and define its resol-
vent operator. Further, we prove the Lipschitz continuity
of resolvent operator and apply these new concepts to
solve a variational-like inclusion problem. Some example
are constructed.
2. Preliminaries
let X be a real Banach spaces with its dual *
, ,
be
the duality pairing between X and *
and (respec-
tively 2X
CB X) denote the family of non-empty subsets
(respectively, closed and bounded subsets) of X. The
generalized duality mapping is defined
*
:2
X
q
JX
by

1
*:, ,
qq
q
Jxf Xxfxfx
 ,
x
X
,
where is a constant. In particular, 2
>1q
J
is the
usual normalized duality mapping. It is known that,
 
1
2
q
q
J
xxJx
for and q
0x
J
is single-
valued if X* is strictly convex. If X is a real Hilbert space,
then 2
J
becomes the identity map ping on X.
The modulus of smoothness of X is the function
:0, 0,
X
 defined by


1
sup1: 1,
2
Xtxyxyxy
t


.
A Banach space X is called uniformly smooth, if

00
lim X
t
t
t
.
X
is called -uniformly smooth, if there exists a
constant such that
q
>0C
*This work is supported by Department of Science and Technology,
Government of India under gr a nt no. SR/S4/MS: 577/09.
q
XtCt
, . 1q
R. AHMAD ET AL.
306
Note that q
J
is single-valued if
X
is uniformly
smooth. The following inequality in -uniformly
smooth Banach spaces has been proved by Xu [17].
q
Lemma 2.1. Let
X
be a real uniformly smooth
Banach space. Then
X
is -uniformly smooth if and
only if there exists a constant such that for all
q>0
q
C
,
x
yX,

,
qq
qq
q
x
yxqyJxCy .
Definition 2. 1. Let ,:
A
BX X and
,:
H
XX X
 be the single-valued mappings.
i)
A
is said to be
-accretive, if


, ,0
q
AxAyJx y
, ,
x
yX;
ii)
A
is said to be strictly
-accretive, if
A
is
-
accretive and equality holds if and only if x = y;
iii)

H
A is said to be
-strongly
-accretive
with respect to
A
, if there exists a constant >0
such that
 
,,, ,
,,;
q
q,
H
Ax uHAy uJxyxy
xyu X



iv)

,
H
B is said to be
-relaxed
-accretive
with respect to , if there exists a constant B>0
such that
 


,,, ,
,,;
q
q,
H
uBxH uByJxyxy
xyu X



v) is said to 1-Lipschitz continuous with
respect to , if there exists a constant such that
(,)H
Ar
1>0r

1
,,
H
Ax uHAy urxy,,,
x
yu X.
In a similar way, we can define the Lipschitz continuity
of the mapping with respect to .

,H B
vi)
is said to be
-Lipschitz continuous, if there
exists a constant >0
such that

,
x
yxy,

,
x
yX.
Definition 2.2. Let ,:NXXX

:X
MX X be the single-
valued mappings. Let be multi-valued
mapping. 2
i)
M
is said to be
-accretive, if


, ,0
q
uvJxy
 ,,
x
yX
zX
, ,
, for each fixed
,uMxz

vM ,yz
;
ii) M is said to be strictly
-accretive, if M is
-
accretive and equality holds if and only if
x
y;
iii) N is said to -relaxed
t
-accretive in the first
argument, if there exists a constant such that
>0t
 

,,, ,
,,;
q
q
NxuNyu Jxytxy
xyu X


iv) N is said to be
-Lipschitz continuous in the first
argument, if there exists a constant >0
such that
,,NxuNyuxy

, ,,
x
yu X.
Similarly, we can define the Lipschitz continuity of N
in the second argument.
3.
,H
-
-
-Accretive Operator
In this section, we generalize -accretive operator
[1] and call it

,H
,H
-
-
-accretive operator and
discuss some of its properties.
Definition 3. 1. Let ,, :
A
BX X
,
,:
H
XX X
:X
MX X be the single-valued mappings. Let
be a multi-valued mapping. M is said
to be 2
,H
-
-
-accretive operator with respect to
mappings
A
and , if for each fixed ,
BzX
,
M
z
is
-accretive in the first argument and
,,
H
AB M
z XX
.
Remark 3.1. If
x
x
,
x
X and >0
,
,MM
  and
,
x
yx
y then
,H
-
-
-accretive operator reduces to -accretive opera-
tor, which was introduced and studied by Zou and Huang
[1].

,H
Example 3.1. Let
X
. Let , 0Ax sinBx x
,
,
H
Ax ByAxBy and

22
,
M
xz xz,
x
X
and for each fixed zX
. Let
 
,,2
M
xzMxzx
x


and

,2
x
y
xy
.
Then
 

2
,,,,22,
2
0,
x
y
MxzMyzxyx y
xy





 

which means that
,
M
z
is
-accretive in the first
argument. Also, for any
x
X, it follows from above
that
 
,, ,
0sin22sin,
,
H
A BMzxHAx BxMx z
x
xx x

 
 

which means that

,,
H
ABM z
 is surjective.
Thus M is
,H
-
-
-accretive operator with respect
to mappings
A
and . B
Example 3.2. Let X, A, B, H,
and M are same as in
Example 3.1. Let

2
,2
x
z
Mxz
e. Then

,
22
,, ,
sin,
xz
,
H
A BMzxHAx BxMx z
xe

 


which shows that

0, ,
H
ABM zX
, that
is
,,
H
AB
M z is not surjective, hence M is
Copyright © 2011 SciRes. AJOR
307
R. AHMAD ET AL.
not -

,H
-
-accretive operator with respect to the
mappings A and B.
Theorem 3.1. Let
,
H
AB be
-strongly
-ac-
cretive with respect to A,
-relaxed
-accretive with
respect to B, >
. Let M be an -

,H
-
-
accretive operator with respect to mappings A and B.
Then the operator is single-
 

1
,,HABM z

valued for each fi xed .
zX
Proof. For any given u and , let zX

1
,

,,

x
yHABMz

u
. Then
,,
H
Ax BxuM
x z
 
,,
,
H
Ay ByuMy z
.
Since
,
M
z
is
-accretive in the first argument,
we have
 













0,
,
,,,
,,,,
,,,
,,
,,,,
,,,,
0.
q
q
q
q
q
qq q
H
Ax Bx
Bx
Bx
By
Bx
Bx
uHAy ByuJxy
HAxHAyBy Jxy
HAxHAy BxHAy Bx
HAyJ xy
HAxHAyBx Jxy
H AyH AyByJxy
xy xyxy
 
 
 
 
 

 
Since >
, we have
x
y and so
is single-valued. This com-
pletes the proof.

,B

1
,HA z
M
Definition 3.2. Let
,
H
AB be
-strongly
-
accretive with respect to A and
-relaxed
-accretive
with respect to B and >
. Let M be an
,H
-
-
-accretive operator with respect to mappings A and B.
Then for each fixed , the resolvent operator
is defined by
zX


,
,:
Mz
R

 

,H

 
HXX

 


,() ,,
Mz
RuHABMz
1u uX,
.
Theorem 3.2. Let
,
H
AB be
-strongly
-ac-
cretive with respect to A,
-relaxed
-accretive with
respect to B, >
and
is
-Lipschitz continuous.
Let is a -:2H
X
MX X
,
-
-accretive
operator with respect to mappings A and B. Then the
resolvent operator is


,
,:
H
Mz
RX

 
X1q
-Lips-
chitz continuous i.e.,

 

1
,,
,,
()Ru

,uv
()q
HH
Mz Mz
RRv uv


  


,
and each fixed .
XzX
Proof. Let ,uv X
, then by definition of resolvent
operator, it follows that


 


1
,
,,,
H
Mz
RuHABMz

 
u
v
,
and


 


1
,
,,,
H
Mz
RvHABMz

 
.
Then











,,
,,
,
,
,
,,
HH
Mz Mz
H
Mz
uHAR uBR u
MRuz
 

  

 
and











,,
,,
,
,
,
,.
HH
Mz Mz
H
Mz
vHARv BRv
MRv z
 

  

 
Let ,



,
,
H
Mz
Pu Ru

 



,
,
H
Mz
Pv Rv

 
Since
,
M
z
is
-accretive in the first argument,
we have






,,
,0
q
uHAPuBPuvH APvBPv
JPuPv

,






,, ,
,,,.
q
q
uvJ PuPvHAPuBPu
HAPvBPvJPu Pv

It follows that
 




















1
,,,
,,,
,
,,,
,
,,,
,
q
q
q
q
q
qq
uvPu PvuvJPuPv
HA PuBPuHA PvBPv
JPuPv
HAPu BPuHAPv BPu
JPuPv
HAPv BPuHAPvBPv
JPuPv
Pu PvPu PvPu Pv

 




 
q

1
1qq
q
uvPu PvPu Pv


1q
PuPvu v


i.e.






1
,,
,,
q
HH
Mz Mz
RuRv u
 

  
 v

.
This completes the proof.
Copyright © 2011 SciRes. AJOR
R. AHMAD ET AL.
308
4. An Application for Solving Generalized
Variational-Like Inclusions
In this section, we apply
,H
-
-
-accretive operator
for solving generalized variational-like inclusions.
Let
,, :STGXCB X
,,: be the multi-valued map-
pings.
A
BXX
, ,,:
H
NXXX

:2MX X
be sin-
gle-valued mappings. Suppose be a
multi-valued mapping such that
X
M
is
,H -
-
-
accretive operator.
We consider the following problem of finding
x
X
,
uSx,
vTx and and

zGx
 
0, ,Nuv Mxz
. (4.1)
Problem (4.1) is called generalized variational-like
inclusion pro blem.
Below are some special cases of our problem:
i) If
X
is real Hilbert space and
,
M
z is maximal
monotone operator then a problem similar to (4.1) was
introduced and studied by Huang [18 ].
ii) If , is single-valued and identity
mapping and and
0TG
N S
,=
 
N

,MM  then
our problem reduces to the problem considered by Bi et
al. [19], that is find such that
uX
 
0Nu Mu .
It is clear that for suitable choices of operators in-
volved in the formulation of problem (4.1), one can
obtain many variational-like inclusions studied in recent
past.
Lemma 4.1. Let
X
be a -uniformly smooth Ba-
nach space. q
X,,GSTCB
,: :X be multi-valued map-
pings,
A
BXX be single-valued mappings and
:
X
X

be a mapping satisfying

x
yxy

: 0xX

 



x
and , where
. Let
 
= 0
,,
ker

ker :
H
NXXX
:2
X
X
be the single-valued mappings. Let be
a multi-valued mapping such that MX
M
is -

,H
-
-
accretive operator. Then

,,,
x
uvz where
x
X
,
, and is a solution of
problem (4.1) if and only if

xuS
vT
x

x
,
zG
,,
x
uvz satisfies



,
,
=,
H
Mz
,
x
RHAxBxNu

 


v
. (4.2)
Proof. Let
,,,
x
uvz where
x
X,
uSx,
and satisfies the Equation (4.2),
i.e.,

vTx
zGx



,
,
=,
H
Mz
,
x
RHAxBxNu

 

v
,
,
.
Using the definition of resolvent operator, we have
 

 
 
1
,, ,
,,,
x
HABM zHAxBxNuv
H
AxBxNuvHAx BxMxz


 



 

  
1
0, ,
0,,
(0), ,0, ,.
Nuv Mxz
NuvMxz
NuvMuzNuvMxz

 
 
 

This completes the proof.
Based on Lemma 4.1, we define the following algori-
thm.
Algorithm 4.1. Let , , , G S T
A
, ,
B
H
, , N
,
and
M
all are same as in Lemma 4.1. For any
given 0
x
X
,
00
xuS, 00
and

xvT
x
0
zG0
and 0<<1
, compute the sequences
n
x
,
n
u,
n
v and
n
z by the following iterative
scheme:



,
1,,,
n
H
nnn
Mz
nn
x
RHAxBxNuv

 

; (4.3)
 

1
11
,
,;
nn
n
nnn nnn
uSx
u uSxSxxx

 

1
(4.4)


1
11
,
,;
nn
n
nnnnnn
vTx
vvTx Txxx

 

1
(4.5)
 

1
11
,
,;
nn
n
nnn nnn
zGx
zzGx Gxxx

 

1
(4.6)
0, 1,2,n
, where
, is the Hausdorff metric
on
CB X.
Theorem 4.1. Let
X
be -uniformly smooth Ba-
nach space and q
,,:
A
BXX
,, be the single-valued
mappings. Let :
H
NXXX

X
MX
be the single-va-
lued mappings and be multi-va-
lued mappings. Suppose be a multi-
valued mapping such that

XX
,,GS :TCB
:X2
M
is -

,H
-
-accre-
tive operator with respect to mappings
A
and .
Assume that B
i)
x
yx

 y and ;
 
ker 0
ii)
,
H
AB is
-strongly
-accretive with respect
to
A
and
-relaxed
-accretive with respect to ;
B
iii)
,H
is 1-Lipschitz continuous in the first
argument and -Lipschitz continuous in the second
argument;
r
2
r
iv)
,N
is 1
-Lipschitz continuous in the first
argument and 2
-Lipschitz continuous in the second
argument;
v)
,N
is -relaxed t
-accretive in the first
argument;
vi)
is
-Lipschitz continuous;
vii) , and are -Lipschitz continuous
with constant
STG
,
ST
and G
respectively;
viii)






,, 1
,,
1
HH nn
Mz Mz
nn
RxRxzz
 
  


,
>0
, 1
,
nn
zzX
;
Copyright © 2011 SciRes. AJOR
R. AHMAD ET AL.
Copyright © 2011 SciRes. AJOR
309
ix)
 
111
121 1212
1
1
<
qq G
qqqqq
qSSSqS q
rrqt qrrC
 
T
 



 
 .
Then
,,,
x
uvz where
x
X
, ,
and is a solution of problem (4.1),
and the sequences

uSx
vT
x

zGx
n
x
, , and

n
u

n
v
n
z de-
fined in Algorithm 3.1 converge strongly to
x
, ,
and , respectively in u v
z
X
.
Since (,)
H
AB
r is 1-Lipschitz continuous in the first
argument and 2-Lipschitz continuous in the second
argument, we have
r
Proof. Using Algorithm 4.1, Lipschitz continuity of
resolvent operator and condition (viii), we have












1
,
1,
,11 11
,
,
,
,11 11
,
,,
,,
,(,)
,,
n
n
n
n
H
nnnnnn
Mz
Hnnnn
Mz
Hnn nn
Mz
Hnnnn
Mz
M
xxRHAxBxNuv
RHAxBxNuv
RHAxBxNuv
RHAxBxNuv
R




 
 
 
 
 
 

 



















 
1
,11 11
,
,11 11
,
1
11 11
1
11
,,
,,
,,
,,
=,,
n
n
Hnnnn
z
Hnnnn
Mz
q
nn nn
nnnnnn
q
nnn n
HAx BxNuv
RHAxBxNuv
HAxBx Nuv

 

11
1
111
11211
2
,,
,(,)
,,
nnn n
nnnn
nn nn
nn nnnn
HAxBxHAxBx
HAxBxHAx Bx
HAx BxHAx Bx
rx xrx xrrx x






1
and hence
 

11 121
,,
qq
q
nnn nnn
HAxBxHAxBxr rxx
 
.
(4.9)
1
H
AxBxN uvzz
H AxBxHAxBx





 
 
 
 
 





 


 
1
1
111
1
,,
,,
.
nnnn
q
nn nn
nn
Nu vNuv
Nu vNu v
zz









(4.7)
Since S is -Lipschitz continuous with constant S
and using (4.4), we have

111
11
,
.
n
nnn nnn
nn
Sn nn nSnn
u uSx Sxxx
xx xxxx
 


 


1
(4.10)
Since,
,N
is -relaxed t
-accretive in the
first argument and using (4.10), we have
 

11
11
,,,,
.
nnnnqnn
q
qq
n
nnS nn
Nu vNuvJu u
tu utxx
 



 

(4.11)
As,
,N
is 1
-Lipschitz continuous in the first
argument, (,)H
r is 1-Lipschitz continuous in the first
argument and 2-Lipschitz continuous in the second
argument and
r
is
-Lipschitz continuous, we have
Now, we estimate







 


 
11
1
11
11
111
11
,,
(,,
,,,
,,,,
,,,,
,,,
,
nnn n
q
nnnn
q
nnn nnn
nnq nnnn
nnqnnnn
q
qnn qnnnn
n
HAxBxHAx Bx
Nu vNuv
HAxBxHAx BxqNuv
NuvJu uqNu v
NuvJHAx BxHAxBx
JuuCNuv Nuv
HAx









 













  
11
11
1
111
1
11
,,
,,,,
, , ,
,,,.
q
nnn nn
nnq nnnn
q
nnnnn n
qq
nnqnnn n
BxHAxBxqNuv
NuvJu uqNu v
NuvHAx BxHAxBx
uuCNuvNu v








 
 


 







1
11
11 1
1
1
1112 1
1
11
1
1
11121
1
11
1
11
112
,,
,, ,
nnnn
qq
nnn nnn
q
q
nn nn
q
qnn
q
q
n
Snn nn
q
qn q
Snn
q
nqn
SS
Nu vNuv
HAxBxHAxBxuu
uu rr xx
uu
xx rrxx
xx
rr



 

 




 

 
 
 


1
1.
qq
nn
xx



(4.12)
Also


1
111
,,
nnn n
n
nnS nn
Nu vNuv
uu xx


1
 

(4.8)
R. AHMAD ET AL.
310
 

11
,, q
qq
qn
nnn nSn n
Nu vNuvxx
 

 .
1
(4.13)
Using (4.9) , (4.11), (4.12) and (4.13), (4.8) becomes
 


 







11 1
1
11
1 121
11
1
11
121 121
,,,,
q
nnn nnnnn
qq
q
nqn
SS nn
qq
qn
qS nn
qq
qq
nn qn
SS Sq
HAxBxHAx BxNuvNuv
qrrxx
Cxx
rr qtqrrC



 
 







 




 

12 1 1
q
qq
qn
nn S nn
rr x xqtx x

  
1
qq
qn
Snn
xx
 

 
 


 
11 1
11 1
121 1211
,,,,
()()
nnn nnnnn
q q
qnnqqnqqn
qSS SqSn
H AxBxHAxBxNuvNuv
rrqtqrrCxx

 
 
 


 


 
.
n
(4.14)
Since is

,N
2
-Lipschitz continuous in the
second ad g the -Lipschitz continuity
of T with
rgument, an
constant usin
T
and (4.5), we have
 
 



1
21 1
,
nn
n
Tn nn n
Nu vN
xx xx




1121
211
,
,
nn nn
n
nn nn
uvv v
Tx Txxx
 






2.
n
Tnn
xx


1
Also, using -Lipschitz continuity of G with constant
(4.15)
G
and (4.6), we have

111
,
n
nnn nnn
zzGx Gxx

 
(4.16)
Using (4.14),(4.15) and (4.16), (4.7 ) becomes
11 1
.
nn
Gn nn nGn n
xx xxxx





x



 

11
11
112 1121
21
,
qqqq
qq
nn qnqn
q
nnSSS qS
nn
TGnn
xxrrqtqrrC
xx
 

 

 



 


or

11
n
nn nn
x
xx


 x, where




 

11
11
121 121
2
.
qqq
qq
nnnqn
qSSSqS
nn
TG
rr qtqrrC


 
 


 






q
qn

Since 0< <1
, it follows that

n

, as where
n

1111
1112 12
2
qqq
qqqqq
qSS SqST
rrqt qrrC
G




 




 





 .
From (ix), it hat <1
follows t
, and consequently

n
x
is a Cauchy sequence i. Since X is a Banach
space, there exists n X
x
X, such that n
x
x as
n.
From (4.4), (4.5) and (4.6) of Algorithm 4.1, it follows
that

n
u,
n
v and

z all are Cauchy sequences in
X, that is there exi and zXthat
,
n
st ,u
v such
n n
vv and n
zz as n. Now, using
continuity of operators S, T, G,
uu
the
A
, B,
H
,
N
,
and M and by Algorithm 4.1, we have

(,)
(, ),,
H
Mz
x
RHAxBxN

 
uv
.
Noe l show t

uSx w, wshalhat




,,
,
0 as .
n
nn
nSn
duSxu uSx
uuSxS
uux xn
 
 
du
x
 
Copyright © 2011 SciRes. AJOR
R. AHMAD ET AL. 311
This implies that , since
. Similarly,
pletes the
5. References
[1] Y. Z. Zou and N. J. Huang, “-Accretive Operator
ion for SolvinVariational Inclusions in
Banach Spematics a
16
/j.amc.2008.07.024


,0duSx
, it follows that uS

zGx
 
Sx CBX
ca
proof.

x
. This comwe
n prove that

vTx,

,H
g
with an Applicat
aces,” Applied Mathnd Computation,
Vol. 204, No. 2, 2008, pp. 809-8.
doi:10.1016
. J. Huang and Y. P. Fang, “Generalized -Accretive
anach Spaces,” Journal of Sichuan Uni-
, No. 4, 2001, pp. 591-592.
[2] Nm
Mappings in B
versity, Vol. 38
[3] R. P. Agarwal, Y. J. Cho and N. J. Huang, “Sensitivity
Analysis for Strongly Nonlinear Quasi-Variational Inclu-
sions,” Applied Mathematics Letters, Vol. 13, No. 6,
2000, pp. 19-24. doi:10.1016/S0893-9659(00)00048-3
[4] R. Ahmad and Q. H. Ansari, “An Iterative Algorithm for
Generalized Nonlinear Variational Inclusions,” Applied
Mathematics Letters, Vol. 13, No. 5, 2000, pp. 23-26.
doi:10.1016/S0893-9659(00)00028-8
[5] X. P. Ding and C. L. Luo, “Perturbed Proximal Point
Alg or it hms for General Quai-Variational-Like Inclusions,”
Journal of Computational and Applied Mathematics, Vol.
210, No. 1-2, 2000, pp. 153-165.
doi:10.1016/S0377-0427(99)00250-2
[6] Y. P. Fang and N. J. Huang, “H-Monotone Operator and
Resolvent Operator Technique for Variational Inclu-
sions,” Applied mathematics and Computation, Vol. 14
No. 2-3, 2003, pp. 795-803. 5,
doi:10.1016/S0096-3003(03)00275-3
[7] Y. P. Fang and N. J. Huang, “Approximate Solutions for
Nonlinear Operator Inclusions with
,H
-Monotone
Operator,” Research Report, Sichuan University, 2003.
[8] Y. P. Fang and N. J. Huang, “H-Accretive Operator and
Resolvent Operator Technique for Solving Variational
Inclusions in Banach Spaces,” Applied Mathematics Let-
ters, Vol. 17, No. 6, 2004, pp. 647-653.
doi:10.1016/S0893-9659(04)90099-7
[9] Y. P. Fang, Y. J. Cho and J. K. Kim, “
,H
-Accretive
Operator and Approximating Solutions for Systems of
Variational Inclusions in Banach Spaces,” Applied Ma-
thematics Letters, 2011, in press.
[10] Y. P. Fang, N. J. Huang and H. P. Thompson, “A New
Systems of Variational Inclusions with
,H
-Mono-
tone Operators in Hilbert Spaces,” Computers and
Mathematics with Applications, Vol. 49, No. 2-3, 2005,
pp. 365-374. doi:10.1016/j.camwa.2004.04.037
[11] N. J. Huang and Y. P. Fang, “Generalized m-Accretive
Mappings in Banach Spaces,” Journal of Sichuan Uni-
versity, Vol. 38, No. 4, 2001, pp. 591-592.
[12] N. J. Huang and Y. P. Fang, “A New Class of General
Variational Inclusions Involving Maximal
-Monotone
onlinear Re-
Mappings,” Publicationes Mathematicae Debrecen, Vol.
62, No. 1-2, 2003, pp. 83-98.
[13] H. Y. Lan, Y. J. Cho and R. U. Verma, “N
laxed Cocoercive Variational Inclusions Involving
,A
-
Accretive Mappings in Banach Spaces,” Computers and
Mathematics with Applications, Vol. 51, No. 9-10, 2006,
pp. 1529-1538. doi:10.1016/j.camwa.2005.11.036
[14] J. H. Sun, S. W. Zhang and L. W. Zhang, “An Algorithm
Based on Resolvent Operators for Solving Positively
Semi-Definite Variational Inequalities,” Fixed Point The-
ory and Applications, Vol. 2007, 2007, Article ID 76040.
doi:10.1155/2007/76040
[15] R. U. Verma, “A Monotonicity and Applications to Non-
linear Variational Inclusions,” Journal of Applied Mathe-
matics and Stochastic Analysis, Vol. 2004, No. 2, 2004,
pp. 193-195. doi:10.1155/S1048953304403013
[16] Y. Z. Zou, K. Ding and N. J. Huang, “New Global Set-
valued Projected Dynamical Systems,” Impulsive Dy-
d Aplica-
namical Systems and Applications, Vol. 4, 2006, pp. 233-
237.
[17] H. K. Xu, “Inequalities in Banach Spaces and Applica-
tions,” Nonlinear Analysis, Theory Methods an
tions, Vol. 16, No. 12, 1991, pp. 1127-1138.
doi:10.1016/0362-546X(91)90200-K
[18] N. J. Huang, M. R. Bai, Y. J. Cho and S. M. Kang, “Gen-
eralized Nonlinear Mixed Quasi-Variational Inequali- ties,” Computers and Mathematics with Applications, Vol.
40, No. 2-3, 2000, pp. 205-215.
doi:10.1016/S0898-1221(00)00154-1
[19] Z. S. Bi, Z. Han and Y. P. Fang, “Sensitivity Analysis for
Nonlinear Variational Inclusions Involving Generalized
m-Accretive Mappings,” Journal of Sichuan University,
Vol. 40, No. 2, 2003, pp. 240-243.
Copyright © 2011 SciRes. AJOR