R. BALI ET AL.

Copyright © 2011 SciRes. AM

1423

and H. M. Jaffrin, “A Three

Mathematical Fluid Mechanics, Vol. 16, 1966, pp. 1-18.

[5] B. B. Gupta, K. K. Nigam

Layer Semi Empirical Model for Flow of Blood and

Other Particulate Suspension through Narrow Tubes,”

Journal of Biomechanical Engineering, Vol. 104, No. 2,

1982, pp. 129-135. doi:10.1115/1.3138326

[6] H. R. Haynes, “Physical Basis of the Dependence of

Blood Viscosity on Tube Radius,” American Journal of

Physiology, Vol. 198, No. 6, 1966, pp. 1193-2000.

1.

,

[7] P. N. Tandon and R. Agarwal, “A Study of Nutritional

Transport in Synovial Joints,” Computers & Mathematics

with Applications, Vol. 17, No. 7, 1989, pp. 1131-114

[8] P. N. Tandon, M. Mishra and A. Chaurasia, “A Model for

Nutritional Transport in Capillary-Tissue Exchange Sys-

tem,” International Journal of Bio-Medical Computing

Vol. 37, No. 1, 1994, pp. 19-28.

doi:10.1016/0020-7101(94)90068-X

[9] H. S. Lew and Y. C. Fung, “The Motion of the Plasma

between Red Cells in the Bolus Flow,”

6, 1969, pp. 109-119

Biorheology, Vol.

o. 1, 1968, pp. 113-143.

[10] M. J. Lighthill, “Pressure Forcing of Tightly Fitting

Pellets along Fluid Filled Elastic Tubes,” Journal of Fluid

Mechanics, Vol. 34, N

doi:10.1017/S0022112068001795

[11] A. C. Barnard, L. Lopez and J. D. Hellums, “Basic The-

ory of Blood Flow in Capillaries,” Microvascu

search, Vol. 1, No. 1, 1968, pp. 23-

lar

24.

Re-

doi:10.1016/0026-2862(68)90004-6

[12] P. R. Zarda, S. Chien and R. Skalak, “Interaction of Vis-

cous Incompressible Fluid with an Elastic Body,” T. Be-

lystschko and T. L. Geers, Eds., Computational Methods

for Fluid-Solid Interaction Problems, American Society

of Mechanical Engineers, New York, 1977, pp. 65-82.

[13] K. L. Lin, L. Lopez and J. D. Hellums, “Blood Flow in

Capillaries,” Microvascular Research, Vol. 5, No. 1, 1973,

pp. 7-19. doi:10.1016/S0026-2862(73)80003-2

[14] T. W. Secomb and R. Skalak, “A Two Dimensional

Model for the Capillary Flow of an Axisymmetric Cell,”

Microvascular Research, Vol. 24, No. 2, 1982, pp 194-

203. doi:10.1016/0026-2862(82)90056-5

[15] T. W. Secomb, R. Skalak, N. Ozakaya and J. F. Gross,

“Flow of Axisymmetric Red Blood Cells in Narrow Cap-

illaries,” Journal of Fluid Mechanics, Vol. 163, 1986, pp.

405-423. doi:10.1017/S0022112086002355

[16] T. W. Secomb, R. Hsu and A. R. Pries, “Motion of Red

. Pries, “A Model for Red

,

Blood Cell in Acapillary with an Endothelial Surface

Layer: Effect of Flow Velocity,” American Journal of

Physiology: Heart and Circulatory Physiology, Vol. 28,

No. 2, 2001, pp. H629-H636.

[17] T. W. Secomb, R. Hsu and A. R

Blood Cell Motion in Glycocalyx-Lined Capillaries,”

American Journal of Physiology: Heart and Circulatory

Physiology, Vol. 274, No. 3, 1998, pp. H1016-H1022.

[18] P. N. Tandon, P. Nirmala, M. Tiwari and U. V. Rana

“Analysis of Nutritional Transport through a Capillary—

Normal and Stenosed,” Computers & Mathematics with

Applications, Vol. 22, No. 12, 1998, pp. 3-13.

doi:10.1016/0898-1221(91)90142-Q