Applied Mathematics, 2011, 2, 1364-1368
doi:10.4236/am.2011.211191 Published Online November 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
Uniqueness of Meromorphic Functions with Their
Nonlinear Differential Polynomials Share a Small Function
Harina P. Waghamore, Tanuja Adaviswamy
Department of Mat hematics, Ba ng al ore University, Bangalore, India
E-mail: pree.tam@rediffmail.com, a.tanuja1@gmail.com
Received August 22, 2011; revised September 27, 2011; accepted October 2, 2011
Abstract
In this paper we deal with the uniqueness of meromorphic functions when two nonlinear differential poly-
nomials generated by two meromorphic functions share a small function. We consider the case for some
general differential polynomials [()
n
f
Pf f
] where P(f) is a polynomial which generalize some result due
to Abhijit Banerjee and Sonali Mukherjee [1].
Keywords: Entire Functions, Meromorphic Functions, Nonlinear Differential Polynomials, Uniqueness
1. Introduction
In this paper, we use the standard notations and terms in
the value distribution theory [2]. For any nonconstant
meromorphic function

f
z

on the complex plane C,
we denote by any quantity satisfying
= o

as , except possibly for a set of
r of finite linear measures. A meromorphic function
is called a small function with respect to f(z) if
. Let
(, )Srf
r
)f
(, )Srf
(, ),Trf

az
(, )(,TraSr
Sf
()az
be the set of meromorphic
function in the complex plane C which are small func-
tions with respect to f. Set
, where a
zero point with multiplicity m is counted m times in the
set. If these zero points are only counted once, then we
denote the set by

(, )Eaz f
: ()zf z
0, ()()azS f
(, ).fEa Let k be
az a positive
integer. Set


 




),
:0,,1,..,
 
k
ii
Eazf
zfzaziikstfz az
0
where a zero point with multiplicity m is counted m
times in the set.
Let f(z) and g(z) be two transcendental meromorphic
functions, If ,
then we say that
()()( ).azS fSg
()
((),)((), )EazfEaz g
f
zand ()
g
z share the value
CM, especially, we say that f(z) and g(z) have the same
fixed points when . If
()az
()az z(,)(, ),Eaf Eag then
we say that f(z) and g(z) share the IM. If
we say that
()az
()
))
) (),g(,()
k
f Eaz(),
k
Eaz
f
za and
()
g
za have same zeros with the same multiplicities
k.
Moreover, we also use the following notations.
We denote by
),
k
Nrf the counting function for
poles of f(z) with multiplicities and by
,k
),
k
Nrf
the corresponding one for which the multiplicity is not
counted. Let
,Nrf
(k be the counting function for
poles of f(z) with multiplicities and let
,k
(,
k
Nrf
be the corresponding one for which the multiplicity is not
counted. Set

(2 (
,, ,,
kk
NrfrfrNNrNf .f
Similarly, we have the notations
))((
1111
,, ,, ,, ,,,
1
kk kkk
Nrr Nrr Nr
fff
NN
.
f
f



Let f(z) and g(z) be two nonconstant meromorphic
functions and
1,1, .EE
f
g We denote by
1
,1
L
Nr
f



the counting function for 1-points of both
()
f
z and ()
g
z about which ()
f
z has larger multi-
plicity than ()
g
z, with multiplicity is not being counted,
and denote by 1]
1
,1
Nr
f



the counting function for
common simple 1-points of both f(z) and g(z) where
multiplicity is not counted. Similarly, we have the nota-
tion

1
,.
1
L
Nr
g




In 2002 Fang and Fang [3] and in 2004 Lin-Yi [4] in-
H. P. WAGHAMORE ET AL.1365
dependently proved the following result.
Theorem A ([3,4]). Let f and g be two nonconstant
meromorphic functions and be an integer. If
(13)n
2
(1)
n
f
f
f
and 2
)(1
n
g
g
g
share 1 CM, then f g.
In 2004 Lin-Yi [5] improved Theorem A by general-
izing it in view of fixed point. Lin-Yi [5] proved the fol-
lowing result.
Theorem B ([5]). Let f and g be two transcendental
meromorphic functions and be an integer. If
(13)n
2
(1)
n
f
f
f
and 2
)(1
n
g
g
g
share z CM, then
.fg
With the notion of weighted sharing of value recently
the first author [6] improved Theorem A as follows.
Theorem C ([6]). Let f and g be two nonconstant
meromorphic functions and
 

12 2Θ;2Θ;minΘ;,Θ;,
n
fg fg

 

2
is an integer. If
n
1
f
ff
and
n
12
g
gg
share
then“

1, 2fg.
In the mean time Lahiri and Sarkar [7] also studied the
uniqueness of meromorphic functions corresponding to
nonlinear differential polynomials which are different
from that of previously mentioned and proved the fol-
lowing.
Theorem D ([7]). Let f and g be two nonconstant
meromorphic functions such that

2
1
n
f
ff
and

2
1
n
g
g
g share “”, where is an in-
teger then either or . If n is an even
integer then the possibility of does not arise.

1, 2
g

n13
fg
fg
f
In 2008, Banerjee and Murkherjee [1] proved the fol-
lowing theorem.
Theorem E ([1]). Let f and g be two transcendental
meromorphic functions such that

2n
f
afbfc f

and

2n
g
agbgcg
 where and 0a0bc
share “”. Then the following holds:

,2
1) If and
0, 0bc


max 122Θ;2Θ;minΘ;,Θ;,
42
Θ;Θ;
n
f
gf
fg


g
0
be an integer, where , then

Θ;Θ;fg
.
f
g
2) If and
0, 0bc


max 122Θ;2Θ;
min Θ;,Θ;
nf
fg


2
g
,
the roots of the equation are distinct
and one of f and g is nonentire meromorphic function
having only multiple poles, then f g.
0azbz c
3) If 0, 0bc
and


max 122Θ;2Θ;
min Θ;,Θ;
nf
fg


2
g
and the roots of the equation coincides,
then
0azbz c
.
f
g
4) If 0, 0cb
and


max 122Θ;2Θ;
min Θ;,Θ;
nf
fg


g
,
then either
f
g
or
f
g
. If n is an even integer
then the possibility
f
g
does not arise.
Here, we obtain unicity theorem when [()
n
f
Pf f
]
and [()
n
g
Pgg
] share a small function.
Theorem 1. Let
f
and
g
be two transcendental
meromorphic functions. Let
11
0
and
1mm
f
(),(0),
mm m
Pfafaf a a 
(0,1,,)
i
ai ma
is the first nonzero coefficient from the
right, and n, m, k be a positive integer with



10 2Θ;2Θ;
min Θ;;Θ;.
nmfg
fg


n
If [()
f
Pf f
] and [()
n
g
Pgg
] share “
” then
,2
.
f
g
2. Lemmas
In this section we present some lemmas which will be
needed in the sequel. Let f, g, F1, G1 be four nonconstant
meromorphic functions. Henceforth we shall denote by h
and H the following two functions.
22
11
f
fgg
hff gg
 

 



1111
11
11
22
and .
11
FFGG
HFG
FG



 




Lemma 2.1. ([1]) If for a positive integer k,
,0; 0
k
Nr ff
denotes the counting function of
those zeros of
f
which are not the zeros of f, where a
zero of
f
with multiplicity m is counted m times if
mk
and k times if then mk


1
,0;0,0;,;
,0;,.

 




k
pk
Nr fNfrfrf
fp
f
NS
N
rfr
Lemma 2.2. ([1]) Let ,
f
g be share “
” and
1, 2
0h
. Then
 
 
22 2
23
,,0;,;,0;
,;,0;,, .
TrfN rfN rfN rg
g
Nrgrp SrfNS
g


 


rg
Copyright © 2011 SciRes. AM
H. P. WAGHAMORE ET AL.
1366
,.
Lemma 2.3. ([8]) Let f be a nonconstant meromorphic
function and , where
are constants and . Then

01
n
n
Pfa afaf 
0
n
a
01
,, ,
n
aa a



,,TrPfnTrf Srf
Lemma 2.4. Let 1
()
n
f
Pf f
F
and 1
()
n
g
Pgg
G
,
where is a small function of f and g. Then
and .
0,


1
,F Srf
,
,
Sr

1
,,SrG Srg
Proof. Using Lemma 2.3 we see that
 
 
1
,,,
2,,.

 
TrFnmTrfTrfSrf
nmTrfSrf
And
 



1
,, 1
,,',,
 

n
nmTrf TrfPfO
TrFTrfSrf
that is,
 

1
,2,TrFnmTrfSrf 

,,.Srf

,.
Hence
1
In the same way we can prove
SrF
1Srg,SrG,.
This proves the Lemma.
Lemma 2.5. ([9]) If and 0h

,0;,;,0;,;
lim sup1,


r
NNNrfr frgrg
Tr
N
rI then or . fg1fg
,fg
Lemma 2.6. Let be two nonconstant mero-
morphic functions. Then

2,
nn
fPffgPgg

where is an integer.
6nm
Proof. Let

2.
nn
fPffgPgg

(2.1)
Let be a 1-point of f with multiplicity .
Then is a pole of g with multiplicity such
that i.e.,
0
z
0
z
np
(1)p
1)(q
11 pnqqmq ,
2( 1)() mqnpq (2.2)
From (2.2) we get 1
n
qm and again from (2.2) we
obtain

1( 1)
1
2
1
nm nnm
pnm m
 




1
.
)
i.e.,
Let be a zero of with multiplicity 1.
Then 1 is a pole of g with multiplicity , say.
So from (2.1) we get
1
z
z()Pf(1)p
1)
1(q

1
2111(2pnmqnm  
1
(3
2
nm
p)
.
Sin
f
ce a pole of ()
n
g
Pg
is either a zero of or a
zero of ,
g
we have


 


 

0
0
0
,0; ,0;'
,,
2
,;,0; ,0;
13
,0;,,
2
,,0;
13
,
 

 
 


,; ,0;
 

 


m
m
NNfrg rg
Srf Srg
m
rfNrg Nrg
nm nm
rgSrf Srg
mm
Trgr g
nm nm
N
Sr
N
f
N

,,Srg
where
NNr rg
0,0;Nr g
denotes the reduced counting func-
those zerotion ofs of
g
which are not the zeros of
g()Pg.
As
1mm
Pfafafafa
11
mm
0
 where
a10
,,a
are m distinct complex num
nd fundal
,
mm
abers. Then
ament theorem of Nevanlinna we get
by seco



0
,,;,0; ,0;mTrfr frfrfNNN

 







1
0
0
,; ,
,0;,;,;
,0;( ,)
2,(,)
13
,0; ,0;
,,.
m
j
j
m
ra fSr f
rfr fraf
rf Srf
mm
Trg Trf
nm nm
rg
N
NNN
N
Nrf
Srf Srg
N





 

 




(2.3)
Similarly, we have
 


00
2
,
,
13
,0;,0;,,.N
m
mTr g
N
Trf
nm nm
rf rgSrfSrg
 
 



(2.4)
Adding (2.3) and (2.4) we obtain
,
m
Tr g

24
1Tr




,
(,)
13
,,
g Trf
nm nm
Srf Srg
 


which is a contradiction. This proves the Lemma.
mero-Lemma 2.7. Let f and g be two transcendental
morphic function and
1n
m
a
Ff
1
10
11
mm
m
a a
f f
mn mnn

 
11
10
11
nmm
mm
aa
Ggg g
mn mnn

a


Copyright © 2011 SciRes. AM
H. P. WAGHAMORE ET AL.1367
where is an integer. Then
n( 2)m ''
F
G im lies
that
p
F
G.
Proof. Let ''
F
G, then 
F
Gc c is a
constant 0. Then by second fundtal theo-
rem w
where
t. Leamen
c
e get
 

 
 
;
,;,0;,;
1
,0;, ;,
1
2,,,, ,.
m
m
m
m
F
a
rf rfrf
mn
a
rgrg Srf
mn
NNN
N
TrfmTrfTrg mTrg Srf
N

 




 



 
Hence we get
,, ,0;,;(,)TrFr rFrcFSrFNNN  



1, 2,
1,,
m nTrfmTrf
mTrgSrf

 
.
(2.5)
Similarly, we have
(2.6)
Adding (2.5) and (2.6) we obtain
 

1, 2,
, ,.
m nTrgmTrg
rfSrg


1mT



1,,32 ,
,
mnTrf TrgmTrf
rg
 
 
32 (,),mTrg SrfS 
i.e.,



(2), ,,,nmTrfT rgS rfSrg  .
which is a contradiction. So and the Lemma is
ed.
a no
0c
prov
Lemma 2.8. ([10]) Let f benconstant meromor-
phic function. Then


,0;, ;,0;,.
k
Nrfk rfNrfNfSr
Lemma 2.9. Let
F
and be given as in Lemma
2.7 and
G
1
F
, 1
G ben byma 2.4. Then give Lem



where are roots of the algebraic equation


11
1
, 0
,;
,;,0;' ,
m
m
r
b f
Nrc fNrfSrf
1) ,,;,;
,;
TrFTrFNrfNrbf
NNrc f
 

 




11
1
2) ,,,0;,;
,; ,;
,;,0;',
m
m
T rGT rGN rgN rbg
Nrb gNrcg
Nrc gNrgSrg
 


12
,,,
m
bb b
1
10
0
11
mn n

 
mm
mm
aa a
zz
mn

and are roots of the algebraic equat on
oof. By therem
and Lemmas 2.3 we obtain
12
,,,
m
cc c i
1
10
0.
mm
mm
aza za

Pr Nevanlinna’s first fundamental theo
 
 
 
 
 




11
1
1
,,1
1
,0;,,0;'1
,,0;,0;,
,,0;,; ,;
,;, ;,0;',.
m
m
TrFTrO
F
F
Nr Fmrmr FO
F
TrFNr FNr FSrF
TrFNrfNrbfNrbf
Nrc fNrcfNrfSrf










 
 

Similarly, we have
1
,0
; ,
F
Nr FmrO



 



11
12
,, ,0;,;
,; ,; ,;
,0; ,
m
m
T rGT rGNrgN rb g
NrbgNrcgNrc g
r gSrg


,;NrcgN


where are roots of the algebraic equation

12
,,,
m
bb b
1
10
0
11
mm
mm
aa a
zz
mn mnn
 
 
and 12
,,cre roots of the algebraic equation ,
m
c c a
1
10
0.
mm
mm
aza za
 
Th
is proves the Lemma.
3. Proofs of the Theorems
rPoof of Theorem 1. Let ,
F
G be defined as in Lemma
2.7 and 11
and
F
G be defined as
ollows that and
in Lemma 2.4. Then it
f
F
G
share “

,2
” and hence 1
F
and G1 share “
,2
”. Suppose 0H. Then by Lem-
ma 2.2, 2.4 and (2.3) we get
 
 
 
 
 






1 1
1
1
,0;
,;
,;,0;' 2,0;2,;
,;, ;,0;
,,.
m
m
r FF
Sr
Nrcf
Nrc fNrfrgrg
NrcgN rcgN rg
Srf Srg
NN


 

(3.1)
Now from Lemma 2.3, 2.8 and 2.9 we can obtain from
(3.1) for
1 2221
21
(,), ;,0;
,;, ,
2,0; 2,;
TrFNN rN rG
Nr Gf Srg
rfrfN N

 

0



 

1,
,0;2,0;2, ;
(, ),0;
3, (,)2,;
3,0; ,,.
mn Trf
rfr grg
mT r gNrg
mTrfTrg rf
rgSrf Srg
NN
N
N

 

 



(3.2)
2,
0;2,;(,)rfr fmTrf
N
NN
Copyright © 2011 SciRes. AM
H. P. WAGHAMORE ET AL.
Copyright © 2011 SciRes. AM
1368
.Sr
In a similar manner we can obtain
.Sr
(3.3)
From (3.2) and (3.3) we get

 

1,
2113Θ;2Θ;2
mn Trf
mgfTr



 


1,
2113Θ;2Θ;2
mn Trg
mfgTr


 


10 2Θ;2Θ;
2
.
nmf g



minΘ;;Θ;
f
g
T
Sr
 
r
(3.4)
Since is arbitrary, (3.4) implies a contrad-
tion. He. Since for we have

0
nce H
ic
0

0

  



( ,1)
,,;,;(,1)
(, )
2Θ;,,1,
rf
mrfNrfrfmr f
Srf
,0; ,rfTrf m
.
f
Trfmr fSrf
N
N

 

te that
We no







 


1
1
1
, ,;
,0;,;,;
,; ,0;,0;
,;, ;,;,0;.
282Θ;2Θ;2()
,0; .
m
m
r G
rf rcfrcf
rf rfrg
rc grcgrgrg
mfgTr
NN N
NNN
r
NN
Sr
NN
g
 


,0
;mr fm
11 1
,; 0;,0;rFF rrGNNNN 
 


(3.5)
Also using Lemma 2.3 we get










,,1 ,,1
(, ;)
,(,;)
,,(1).
n
n
nn
n
TrFmrfmrfP ffmrf
Nrf Pff
mrfP fNrfP f
TrfPfnmTrfO
 
 



(3.6)
Similarly

,,1 ,TrGmrgnmTrgO


1. (3.7)
From (3.6) and (3.7) we get
11
max,,,,1TrFTrGn mTrmrf
 .(3.
By (3.5) and (3.8) applying Lemma 2.5 we get either
11
F
G
or 111.FG
Now from Lemma 2.6 it follows111.FG
that Again
11
F
G
implies .
F
G
So from Lem
.
4. Acknowledgements
Researce first
y, Bangalore under the project U.O. No.:
1.
. References
nction,” Archivum Mathe-
p. 41-56.
ue Distribution Theory,” Springer, Berlin,
. 44, No. 5-6,
ma 2.7 the theo-
rem follows
h work of th author is supported by Banga-
lore Universit
DEV:D2:YRB-BUIRF:2010-1
5
[1] A. Banerjee and S. Mukherjee, “Nonlinear Differential
Polynomials Sharing a Small Fu
maticum, Vol. 44, No. 1, 2008, p
[2] L. Yang, “Val
Germany, 1993.
[3] C.-Y. Fang and M.-L. Fang, “Uniqueness of Meromor-
Phic Functions and Differential Polynomials,” Computers
and Mathematics with Applications, Vol
2002, pp. 607-617. doi:10.1016/S0898-1221(02)00175-X
[4] W.-C. Lin and H.-X. Yi, “Uniqueness Theorems for Me-
ial
romorphic Functions,” Indian Journal of Pure and Ap-
plied Mathematics, Vol. 35, No. 2, 2004, pp. 121-132.
[5] W.-C. Lin and H.-X. Yi, “Uniqueness Theorems for Me-
romorphic Functions Concerning Fixed Points,” Com-
plex Variables: Theory and Applications, Vol. 49, No. 11,
2004, pp. 793-806.
[6] A. Banerjee, “On Uniqueness for Nonlinear Different
Polynomials Sharing the Same 1-Point,” Annales Polo-
nici Mathematici, Vol. 89, No. 3, 2006, pp. 259-272.
doi:10.4064/ap89-3-3
[7] I. Lahiri and A. Sarkar, “Nonlinear Differential Polyno-
iences of Differential Polynomials
Mials Sharing 1-Points with Weight Two,” Chinese Jour-
nal Contemporary Mathematics, Vol. 25, No. 3, 2004, pp.
325-334.
[8] C.-C. Yang, “On Defic
II,” Mathematische Zeitschrift, Vol. 125, No. 2, 1972, pp.
107-112. doi:10.1007/BF01110921
[9] H.-X. Yi, “Meromorphic Functions that Share One or
Two Valu
8)
es,” Complex Variables: Theory and Applica-
ariables: Theory and
tions, Vol. 28, No. 1. 1995, pp. 1-11.
[10] H.-X. Yi, “Uniqueness of Meromorphic Functions and a
Question of C. C. Yang,” Complex V
Applications, Vol. 14, No. 14, 1990, pp. 169-176.