
A New Weight Initialization Method Using Cauchy’s Inequality Based on Sensitivity Analysis
Copyright © 2011 SciRes. JILSA
248
ucts for Second Order Gradient Descent,” Neural Com-
putation, Vol. 14, No. 7, 2002, pp. 1723-1738.
doi:10.1162/08997660260028683
[5] F. Biegler-Konig and F. Barnmann, “A Learning Ago-
rithm for Multilayered Neural Networks Based on Linear
Least Squares Problems,” Neural Networks, Vol. 6, No. 1,
1993, pp. 127-131. doi:10.1016/S0893-6080(05)80077-2
[6] Y. F. Yam and T. W. S. Chow, “Determining Initial
Weights of Feedforward Neural Networks Based on Least
Squares Method,” Neural Processing Letters, Vol. 2, No.
2, 1995, pp. 13-17. doi:10.1007/BF02312350
[7] Y. F. Yam, T. W. S. Chow and C. T. Leung, “A New
Method in Determining the Initial Weights of Feedfor-
ward Neural Networks for Training Enhancement,” Neu-
rocomputing, Vol. 16, No. 1, 1997, pp. 23-32.
doi:10.1016/S0925-2312(96)00058-6
[8] G. P .Drago amd S. Ridella, “Statiscally Controlled Acti-
vation Weight Initialization (SCAWI),” IEEE Transac-
tions on Neural Networks, Vol. 3, No. 4, 1992, pp. 899-
905. doi:10.1109/72.143378
[9] D. Nguyen and B. Widrow, “Improving the Learning
Speed of 2-Layer Neural Networks by Choosing Initial
Values of the Adaptive Weights,” Proceedings of the In-
ternational Joint Conference on Neural Networks, San
Diego, Vol. 3, 17-21 June 1990, pp. 21-26.
doi:10.1109/IJCNN.1990.137819
[10] H. Shimodaira, “A Weight Value Initialization Method
for Improved Learning Performance of the Back Propaga-
tion Algorithm in Neural Networks,” Proceedings of the
sixth Internation Conference on Tools with Artificial In-
telligence, New Orleans, 6-9 November 1994, pp. 672-
675. doi:10.1109/TAI.1994.346429
[11] M. Lehtokangas, J. Saarinen, K. Kaski and P. Huuhtanen,
“Initializing Weights of a Multilayer Perceptron Network
by Using the Orthogonal Least Squares Problem,” Neural
Computation, Vol. 7, No. 5, 1995, pp. 982-999.
doi:10.1162/neco.1995.7.5.982
[12] Y. Liu, C. F. Zhou and Y. W. Chen, “Weight Initializa-
tion of Feedforward Neural Networks by Means of Partial
Least Squares,” International Conference on Maching
Learning and Cybernetics, Dalian, 13-16 August 2006,
pp. 3119-3122.
[13] X. M. Zhang, Y. Q. Chen, N. Ansari and Y. Q. Shi, “Mini-
Max Initialization for Function Approximation,” Neuro-
computing, Vol. 57, 2004, pp. 389-409.
doi:10.1016/j.neucom.2003.10.014
[14] M. Fernandez-Redondo and C. Hernandez-Espinosa, “A Com-
parison among Weight Initialization Methods for Multi-
layer Feedforward Networks,” Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural
Networks, Como, Vol. 4, 24-27 July 2000, pp. 543-548 .
[15] T.-C. Hsiao, C.-W. Lin and H. K. Chiang, “Partial Least
Squares Algorithm for Weight Initialization of Backpro-
pagation Network,” Neurocomputing, Vol. 50, 2003, pp.
237-247. doi:10.1016/S0925-2312(01)00708-1
[16] M. Huskan and C. Goerick, “Fast Learning for Problem
Classes Using Knowledge Based Network Initialization,”
Proceedings of International Conference on Neural Net-
works, Como, 24-27 July 2000, pp. 619-624.
[17] D. Erdogmus, O. Fontenla-Romero, J. C. Principe, A. Alon-
so-Betanzos and E. Castillo, “Linear-Leaset-Squares Initia-
lization of Multilayer Perceptrons through Backpropaga-
tion of the Desired Response,” IEEE Transactions of Neu-
ral Networks, Vol. 16, No. 2, 2005, pp. 325-337.
doi:10.1109/TNN.2004.841777
[18] Y. F. Yam and T. W. S. Chow, “A Weight Initialization Me-
thod for Improving Training Speed in Feedforward Neu-
ral Network,” Neurocomputing, Vol. 30, No. 1-4, 2000,
pp. 219-232. doi:10.1016/S0925-2312(99)00127-7
[19] Y. F. Yam and T. W. S. Chow, “Feedforward Networks Trai-
ning Speed Enhancement by Optimal Initialization of the
Synaptic Coefficients,” IEEE Transactions on Neural
Networks, Vol. 12, No. 2, 2001, pp. 430-434.
doi:10.1109/72.914538
[20] E. Castillo , O . Fo nten la-Romer o, A. A. B etanzos and B. Gui-
jarro-Berdinas, “A Global Optimum Approach for One
Layer Neural Networks,” Neural Computation, Vol. 14,
No. 6, 2002, pp. 1429-1449.
doi:10.1162/089976602753713007
[21] E. Castillo, B. Guijarro-Berdinas, O. Fontenla-Romero and
A. A. Betanzos, “A Very Fast Learning Method for Neu-
ral Networks Based on Sensitivity Analysis,” Journal of
Machine Learning Research, Vol. 7, 2006, pp. 1159-1182.
[22] R. A. Fisher, “The Use of Multiple Measurements in Taxo-
nomic Problems,” Annual Eugenics, Vol. 7, No. 2, 1936,
pp. 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x
[23] A. Frank and A. Asuncion, “UCI Machine Learning Re-
pository,” School of Information and Computer Science,
Universty of California, Irvine, 2010.
http://archieve.ics.uci.edu/ml