G. M. ABDEL-RAHMAN

Copyright © 2011 SciRes. JMP

1303

when comp ar ed with the cas e wh en th e r e is no ro ta tion at

the boundary.

8. References

[1] W. C. Tan and T. Masuoka, “Stokes First Problem for a

Second Grade Fluid in a Porous Half-Space with Heated

Boundary,” International Journal of Non-Linear Me-

chanics, Vol. 40, No. 4, 2005, pp. 515-522.

doi:10.1016/j.ijnonlinmec.2004.07.016

[2] W.C. Tan and. T. Masuoka, “Stokes First Problem for an

Oldroyd-B Fluid in a Porous Half-Space,” Physics of

Fluids, Vol. 17, No. 2, 2005, pp. 3101-3107.

doi:10.1063/1.1850409

[3] C. Fetecau and C. Fetecau, “Decay of a Potential Vortex

in an Oldroyd-B Fluid,” International Journal of Engi-

neering Science, Vol. 43, No. 3, 2005, pp. 340-351.

doi:10.1016/j.ijengsci.2004.08.013

[4] C. Fetecau and C. Fetecau, “Unsteady Flows of

Oldroyd-B Fluids in a Channel of Rectangular Cross-

Section,” International Journal of Non-Linear Mechanics,

Vol. 40, No. 9, 2005, pp. 1214-1219.

doi:10.1016/j.ijnonlinmec.2005.05.005

[5] C. Fetecau and C. Fetecau, “Starting Solutions for Some

Unsteady Unidirectional Flows of a Second Grade Fluid,”

International Journal of Engineering Science, Vol. 43,

No. 10, 2005, pp. 781-789.

doi:10.1016/j.ijengsci.2004.12.009

[6] T. Hayat, S. Nadeem, S. Asghar and A. M. Siddiqui,

“Unsteady MHD Flow Due to Eccentrically Rotating Po-

rous Disk and a Third Grade Fluid at Infinity,” Interna-

tional Journal of Applied Mechanics and Engineering,

Vol. 11, No. 2, 2006, pp. 415-419.

[7] T. Hayat and A. H. Kara, “Couette Flow of a Third Grade

Fluid with Variable Magnetic Field,” Mathematical and

Computer Modelling, Vol. 43, No. 1-2, 2006, pp. 132-137.

doi:10.1016/j.mcm.2004.12.009

[8] T. Hayat, S. B. Khan and M. Khan, “The Influence of

Hall Current on the Rotating Oscillating Flows of an Ol-

doyd-B Fluid in Porous Medium,” Nonlinear Dynamics,

Vol. 47, No. 4, 2007, pp. 353- 362.

doi:10.1007/s11071-006-9034-z

[9] C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Uni-

directional Flow of an Oldoyd-B Fluid in a Circular Duct

with Different Given Volume Flow Rate Conditions,”

Heat and Mass Transfer, Vol. 40, 2004, pp. 203-209.

doi:10.1007/s00231-002-0350-7

[10] C. I. Chen, C. K. Chen and Y. T. Yang, “Unsteady Uni-

directional Flow of a Second Grade Fluid between the

Parallel Plates with Different Given Volume Flow Rate

Conditions,” Applied Mathematics and Computation, Vol.

137, No. 2, 2003, pp. 437-450.

doi:10.1016/S0096-3003(02)00149-2

[11] A. C. Eringen, “Simple Microfluids,” International

Journal of Engineering Science, Vol. 2, No. 2, 1964, pp.

205-217. doi:10.1016/0020-7225(64)90005-9

[12] A. C. Eringen, “Theory of Micropolar Fluids,” Interna-

tional Journal of Mathematics and Mechanics, Vol. 16,

1966, pp. 1-18.

[13] A. C. Eringen, “Theory of Micropolar Fluids,” Journal of

Mathematical Analysis and Applications, Vol. 38, No. 2,

1972, pp. 480-496. doi:10.1016/0022-247X(72)90106-0

[14] A.C. Eringen, “Microcontinuum Field Theories. II: Flu-

ent Media,” Springer, New York, 2001.

[15] Y. Y. Lok, P. Phang, N. Amin and I. Pop, “Unsteady

Boundary Layer Flow of a Micropolar Fluid near the

Forward Stagnation Point of a Plane Surface,” Interna-

tional Journal of Engineering Science, Vol. 41, 2003, pp.

173-186. doi:10.1016/S0020-7225(02)00146-5

[16] R. Nazar, N. Amin, D. Filip and I. Pop, “Stagnation Point

Flow of a Micropolar Fluid towards a Stretching Sheet,”

International Journal of Non-Linear Mechanics, Vol. 39,

No. 7, 2004, pp. 1227-1235.

doi:10.1016/j.ijnonlinmec.2003.08.007

[17] A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homo-

topy Perturbation Method for Thin Film Flow of a Third

Grade Fluid down an Inclined Plane,” Chaos, Solitons

and Fractals, Vol. 35, No. 1, 2008, pp. 140-147.

doi:10.1016/j.chaos.2006.05.026

[18] A. Moncef, “Numerical Study for Micropolar Flow over

a Stretching Sheet,” Computational Materials Science,

Vol. 38, No. 4, 2007, pp. 774-780.

doi:10.1016/j.commatsci.2006.05.014

[19] A. M. Siddiqui, R. Ahmad and Q. K. Ghori, “Thin Film

Flow of Non-Newtonian Fluid on a Moving Belt,” Chaos,

Solitons and Fractals, Vol. 33, 2007, pp. 1006-1016.

doi:10.1016/j.chaos.2006.01.101

[20] A. M. Siddiqui, R. Mahmood and Q. K. Ghori, “Homo-

topy Perturbation Method for Thin Film Flow of a Fourth

Grade Fluid down a Vertical Cylinder,” Physical Letters

A, Vol. 352, 2006, pp. 404-410.

doi:10.1016/j.physleta.2005.12.033

[21] M. Sajid, N. Ali and T. Hayat, “On Exact Solutions for

Thin Film Flows of a Micropolar Fluid,” Communica-

tions in Nonlinear Science and Numerical Simulation,

Vol. 14, No. 2, 2009, pp. 451-461.

doi:10.1016/j.cnsns.2007.09.003

[22] M. Hameed and S. Nadeem, “Unsteady MHD Flow of a

Non-Newtonian Fluid on a Porous Plate,” Journal of

Mathematical Analysis and Applications, Vol. 325, 2007,

pp. 724-733. doi:10.1016/j.jmaa.2006.02.002

[23] G. M. Abdel-Rahman, “Studying Effect of MHD on Thin

Films of a Micropolar Fluid,” Physica B, Vol. 404, No.

21, 2009, pp. 3859- 3866.

doi:10.1016/j.physb.2009.07.112

[24] G. Lukaszewicz, “Micropolar Fluids: Theory and Appli-

cations,” Birkhauser, Basel, 1999.

[25] D. A. S. Ress and I. Pop, “Free Convection Boundary

Layer Flow of a Micropolar Fluid from a Vertical Flat

Plate,” IMA Journal of Applied Mathematics, Vol. 61,

2001, pp. 179-191. doi:10.1093/imamat/61.2.179

[26] G. Ahmadi, “Self-Similar Solution of Incompressible

Micropolar Boundary Layer Flow over a Semi-Infinite

Flat Plate,” International Journal of Engineering Science,