E. Ebrahimzadeh et al. / J. Biomedical Science and Engineering 4 (2011) 699-706 705
Table 3. Predictive accuracy for the proposed method and
Wang’s method [5] (2-minute analysis).
Comparison Methods (using MLP)
Ref [5] Our Methods
67.44% 91.23%
that have explicit difference with healthy person’s fea-
tures. Although these differences could not be detected by
means of simple methods, but the time-frequency (TF)
method has far more ability to detect these differences.
These results show that by TF method one can predict
the sudden cardiac death, even 2 minutes before SCD
occurrence.
REFERENCES
[1] Lin, J., et al. (2002) A few evidence in patient’s ECG
shown high risk existed inducing syncope or SCD.
Journal of Electrocardiolog, 21, 95-198.
[2] Chen, X. (2000) The patient with high risk of sudden
cardiac death, The Chinese Journal of Arrhythmia, 4,
307-308.
[3] Smith, W.M. (1997) Cardiac Defibrillation. IEEE-EMBC
and CMBEC, Montreal, 20-23 September 1997, 249-250.
[4] Jones, J.L. and Tovar, O.H. (1996) The Mechanism of
Defibrillation and Cardioversion. Proceedings of the
IEEE, 84, 392-403. doi:10.1109/5.486742
[5] Shen, T.W., Shen, H.P, Lin, C. and Ou, Y. (2007) Detec-
tion and prediction of Sudden Cardiac Death (SCD) for
personal healthcare. 29th Annual International Confer-
ence of the IEEE, Buenos Aires, 22-26 August 2007,
2575-2578.
[6] Fang, Z., Lai, D., Ge, X. and Wu, X. (2009) Successive
ECG telemetry monitoring for preventing sudden cardiac
death. IEEE Engineering in Medicine and Biology Soci-
ety, 1738-1741.
[7] Ichimaru, Y., et al, (1988) Circadian changes of heart rate
variability. Proceedings of Computers in Cardiology,
Washington, DC, 25-28 September 1988, 315-318.
[8] VanHoogenhuyze, D., Martin, G., et al., (1998) Spectrum
of heart rate variability. Proceedings of Computers in
Cardiology, Chigaco, 13-16 September 1998, 65.
[9] Mrowka, R., Theres, H., et al., (1998) Alternans-like
phenomena due to filtering of electrocardiographic data.
Proceedings of Computers in Cardiology, Chigaco, 13-16
September 1998, 725-727.
[10] Meeting Report, (2006) Non-invasive test to predict
sudden cardiac death proven effective. American Heart
Association (AHA).
http://www.heart.org/presenter,jhtml:identifier=3043452.
[11] Acharya, R., Kumar, A., Bhat, S., Lim, M., Lyengar, S.,
Kannathal, N. and Krishnan, S. M. (2004) Classification
of cardiac abnormalities using heart rate signals. IEEE
Engineering in Medicine and Biology Magazine, 42, 288-
293.
[12] Pan, J. and Tompkins, W.J. (1985) A real time QRS de-
tection algorithm. IEEE Transaction on Biomedical En-
gineering, 32, 230-236. doi:10.1109/TBME.1985.325532
[13] Obayya, M. and Chadi, F.A. (2008) Data fusion for heart
diseases classification using multi-layer feed forward
neural Network, ICCES 2008 International Conference
on Computer Engineering & Systems, Cairo, 25-27 No-
vember 2008, 67-70.
[14] Heart rate variability: Standards of measurements,
physiological interpretation, and clinical use. Task force
of the European society of cardiology and the North
American society of pacing and electrophysiology, Cir-
culation, 93, 354-381.
[15] Mohebbi, M. and Ghassemian, H. (2008) Detection of
atrial fibrillation episodes using SVM. Conference Pro-
ceedings of the International Conference of IEEE Engi-
neering in Medicine and Biology Society, 2008, 177-180.
[16] Martinmäki, K., Rusko, H., Saalasti, S. and Kettunen, J.
(2006) Ability of short-time Fourier transform method to
detect transient changes invagal effects on hearts: A
pharmacological blocking study. American Journal of
Physiology, Heart and Circulatory Physiology, 290,
H2582-H2589. doi:10.1152/ajpheart.00058.2005
[17] Keselbrener, L. and Akselrod, S. (1996) Selective dis-
crete Fourier transform algorithm for time-frequency
analysis: method and application on simulated and car-
diovascular signals. IEEE Transactions on Biomedical
Engineering, 43, 789-802. doi:10.1109/10.508542
[18] Toledo, E., Gurevitz, O., Hod, H., Eldar, M. and Ak-
selrod, S. (2003) Wavelet analysis of instantaneous heart
rate: A study of autonomic control during thrombolysis.
American Journal of Physiology: Regulatory, Integrative
and Comparative Physiology, 284, R1079-R1091.
[19] Clari, F. Vallverdd, M., Baranowski, R., Chonowska, L.,
Martinez, P. and Caminal, P. (2000) Time-frequency rep-
resentation of the HRV: A tool to characterize sudden
cardiac death in hypertrophy cardiomyopathy patients.
Proceedings of the 22nd Annual International Confer-
ence of the IEEE, 1, 71-73.
[20] Novak P. and Novak, V. (1993) Time/frequency mapping
of the heart rate, blood pressure and respiratory signals.
Medical and Biological Engineering and Computing, 31,
103-110. doi:10.1007/BF02446667
[21] Pola, S., Macerata, A., Emdin, M. and Marchesi, C.
(1996) Estimation of the power spectral density in
non-stationary cardiovascular time series: Assessing the
role of the time-frequency representations (TFR). IEEE
Transactions on Biomedical Engineering, 43, 46-59.
doi:10.1109/10.477700
[22] Mainardi, L.T., Montano, N. and Cerutti, S. (2004)
Automatic decomposition of Wigner distribution and its
application to heart rate variability. Methods of Informa-
tion in Medicine, 43, 17-21.
[23] Jasson, S., Medigue, C., Maison-Blanche, P., Montano,
N., Meyer, L., Vermeiren, C., Mansier, P., Coumel, P.,
Malliani, A. and Swynghedauw, B. (1997) Instant power
spectrum analysis of heart rate variability during or-
thostatic tilt using a time-frequency-domain method.
Circulation. 96, 3521-3526.
[24] Bianchi, A.M., Mainardi, L.T., Meloni, C., Chierchia, S.
and Cerutti, S. (1997) “Continuousmonitoring of the
sympathovagal balance through spectral analysis. Recur-
sive autoregressive techniques for tracking transient
events in heart rate signals. IEEE Engineering in Medi-
C
opyright © 2011 SciRes. JBiSE