﻿ Annual Production Plan of Mine Based on Linear Programming

Open Access Library Journal
Vol.05 No.06(2018), Article ID:85169,6 pages
10.4236/oalib.1104651

Annual Production Plan of Mine Based on Linear Programming

Shulin Jiang1, Zhao Zhang2, Qiaozhi Sang3

1Mining Engineering College, North China University of Science and Technology, Tangshan, China

2Mechanical College, Shijiazhuang Tiedao University, Shijiazhuang, China

3Yisheng College, North China University of Science and Technology, Tangshan, China

Received: May 10, 2018; Accepted: June 5, 2018; Published: June 8, 2018

ABSTRACT

In order to solve the difficulty of the arrangement of ore production at each mine site during the transition from open pit to underground mining in Shirengou iron mine. Taking the largest amount of mining as the objective function, each deposit storage capacity, ore dilution rate, ore loss rate and grade as the constraints, thus the linear programming model was established and solved by lingo considering the balance between reserve and production ratio. The optimal number of each mining area mining was obtained, providing a theoretical basis for raising the overall economic benefits of mining transition period.

Subject Areas:

Mineral Engineering

Keywords:

Mine Production Plan, Linear Programming, Optimum Mining Program, Lingo Software

1. 引言

2. 模型建立

2.1. 目标函数确定

$\text{Max}N=\sum _{i=1}^{n}{x}_{i}$ (1)

2.2. 年产量约束

$\sum _{i=1}^{n}{x}_{i}\le O$ (2)

2.3. 储采比约束

${S}_{i\mathrm{min}}\le {x}_{i}\le {S}_{i\mathrm{max}}$ (3)

$\left\{\begin{array}{l}{S}_{i\mathrm{min}}=\frac{{p}_{i}×{s}_{i}}{k}\\ {S}_{i\mathrm{max}}={s}_{i}-\frac{{p}_{i}×{s}_{i}}{k}\end{array}$ (4)

2.4. 矿石损失率约束

$\frac{\sum _{i=1}^{n}{L}_{i}×{x}_{i}}{\sum _{i=1}^{n}{x}_{i}}\le {L}_{\mathrm{max}}$ (5)

2.5. 矿石贫化率约束

$\frac{\sum _{i=1}^{n}{D}_{i}×{x}_{i}}{\sum _{i=1}^{n}{x}_{i}}\le {D}_{\mathrm{max}}$ (6)

2.6. 品位约束

${T}_{\mathrm{min}}\le \frac{\sum _{i=1}^{n}{T}_{i}×{x}_{i}}{\sum _{i=1}^{n}{x}_{i}}$ (7)

2.7. 开采成本约束

$\frac{\sum _{i=1}^{n}{M}_{i}×{x}_{i}}{\sum _{i=1}^{n}{x}_{i}}\le {M}_{\mathrm{max}}$ (8)

3. 模型求解

4. 结论

Cite this paper

Jiang, S.L., Zhang, Z. and Sang, Q.Z. (2018) Annual Production Plan of Mine Based on Linear Programming. Open Access Library Journal, 5: e4651. https://doi.org/10.4236/oalib.1104651

References

1. 1. 章海燕. 含模糊变量的两层多目标线性规划方法[J]. 科技通报, 2017, 33(8): 11-14.

2. 2. 陈忠强, 王李管, 熊书敏, 等. 基于模糊预测性线性规划的矿山产能分配方案优化分析[J]. 中南大学学报(自然科学版), 2014, 45(9): 3166-3173.

3. 3. 刘伟, 田斌. 露天磷矿数字配矿模型[J]. 武汉工程大学学报, 2013, 35(8): 23-26.

4. 4. 杨驰, 吴建胜, 等. 露天矿多采区协同开采资源配置优化[J]. 金属矿山, 2017(6): 18-23.

5. 5. 高志国, 宿海芬. 线性规划在露天矿配矿中的应用[J]. 内蒙古科技大学学报, 2017, 36(2): 137-140.

6. 6. 王军宏. 线性规划在露天矿生产中的应用探讨[J]. 酒钢科技, 2016(2): 6-9, 18.

7. 7. 张慧慧. 露天采矿排岩系统的线性规划法研究及其应用[J]. 露天采矿技术, 2014(2): 34-36.

8. 8. 周琴, 马从安, 郑玲玲. 线性规划在矿山材料公司生产计划中的应用[J]. 煤炭技术, 2013, 32(1): 270-272.

9. 9. 李事捷, 徐志宏. 线性规划法在采矿计划中的应用[J]. 金属矿山, 2009(4): 20-21, 25.

10. 10. 刘浪, 陈建宏, 郑海力. 模糊预测型线性规划在矿山产能分配中的应用[J]. 中南大学学报(自然科学版), 2012, 43(2): 611-619.

11. 11. 关贤欢. 基于计算机模拟技术的矿山生产计划编制研究[J]. 现代矿业, 2017, 33(2): 78-81.

12. 12. 吴海彦. 充填采矿法矿石损失贫化的原因及控制措施[J]. 河南冶金, 2013, 21(2): 34-35, 44.

13. 13. 覃健华, 杨泽光. 矿石贫化率的控制措施及计算方法探讨[J]. 企业科技与发展, 2017(3): 87-89.