
R. A. MEKHEIMER ET AL.
180
4.3. 2-Cyano - 3 -p h en y lp r op -2 - en e th i oa mide (5a)
1H NMR (600 MHz, DMSO-d6): δ =7.43 - 7.61 (m, 5H),
7.95 (s, 1H), 9.57 (br s, 2H). 13C NMR (150 MHz,
DMSO-d6): δ =102.2, 118.0, 128.0, 128.4, 129.0, 129.2,
129.6, 130.4, 136.5, 195.5. IR (KBr): = 3410, 3295,
3200, 2185, 1619 cm–1. Found: C, 63.67; H, 4.37; N,
15.0; S, 16.85; anal. calcd for C10H8N2S: C, 63.80; H,
4.28; N, 14.88; S, 17.03. MS: m/z = 188 (M+, 60), 187
(M+-1, 100), 172 (3), 162 (4), 161 (4), 160 (7), 155 (12),
128 (14), 102 (20), 101 (11), 100 (7), 78 (8), 77 (24), 76
(14), 75 (13), 74 (11), 60 (49), 51 (42), 50 (29).
4.4. Synthesis of 3-Aryl-2-(hetaryl)acrylonitriles
9a-c and 11a-c; General Procedure
To a solution of compounds 6 or 10 (2.5 mmole) in ab-
solute EtOH (12 mL), nitrones 2a,b,i (2.5 mmole) were
added. The flask was exposed to direct sunlight for a
period determined by TLC control (see Table 1). The
maximum temperature of the reaction mixture was de-
termined and cited in Table 1. Then, the reaction mix-
ture was worked up as described above for 5a-h to give
the products 9a-c and 11a-c, respectively.
4.5. 2-(5-Ethylthio-4-phenyl-4H-1,2,4-triaz ol-3-yl)-
3-(4-methoxyphenyl)acrylonitrile (9b)
1H NMR (600 MHz, DMSO-d6): δ =1.43 (t, 3J = 7.2 Hz,
3H), 3.28 (q, 3J = 7.2 Hz, 2H), 3.86 (s, 3H), 6.93 (d, 3J =
7.8 Hz, 2H), 6.97 (m, 1H), 7.33 (m, 2H), 7.53 (m, 1H),
7.58 (m, 1H), 7.82 (d, 3J = 7.8 Hz, 2H), 7.88 (s, 1H). 13C
NMR (150 MHz, DMSO-d6): δ =14.7, 29.7, 55.5, 93.6,
114.5, 115.1, 121.3, 127.4, 129.0, 130.1, 132.3, 132.7,
146.3, 149.3, 153.9, 157.6. IR (KBr): = 2922, 2200
cm–1. MS: m/z = 362 (M+, 12), 361 (45), 333 (7), 118
(12), 115 (7), 114 (14), 108 (2), 88 (7), 78 (11), 77 (100),
65 (11), 64 (15), 63 (21), 61 (7), 60 (12), 51 (72), 50 (20).
Found: C, 66.41; H, 4.89; N, 15.29; S 9.07; anal. calcd
for C20H18N4OS: C, 66.28; H, 5.01; N, 15.46; S, 8.85.
4.6. 3-(4-Chlorophenyl)-2-(5-ethylthio-4-phenyl-
4H-1,2,4-triazol-3-yl)acrylonitrile (9c)
1H NMR (600 MHz, DMSO-d6): δ =1.43 (t, 3J = 7.2 Hz,
3H), 4.06 (q, 3J = 7.2 Hz, 2H), 6.93 (m, 2H), 7.23 (m,
3H), 7.44 (d, 3J = 8.4 Hz, 2H), 7.82 (d, 3J = 8.4 Hz, 2H),
8.45 (s, 1H). IR: (KBr): = 3050, 2970, 2200. MS: m/z =
368 (M+, 4), 366 (M+, 8), 337 (9), 255 (3), 244 (2), 230
(2), 189 (3), 161 (5), 137 (7), 126 (9), 118 (10), 113 (3),
112 (3), 105 (9), 100 (5), 99 (9), 91 (12), 77 (99), 65 (22),
64 (12), 63 (17), 61 (10), 60 (19), 59 (24), 51 (100), 50
(28). Found: C, 62.01; H, 4.25; Cl, 9.59; N, 15.38; S,
8.68; anal. calcd for C19H15ClN4S: C, 62.20; H, 4.12; Cl,
9.66; N, 15.27; S, 8.74.
5. Acknowledgements
The authors are grateful to King Abdul-Aziz University,
Jeddah, Kingdom of Saudi Arabia, for the financial sup-
port and necessary facilities which enabled this research
to be completed.
6. References
[1] P. Merino, “Science of Synthesis,” In: A. Padwa, D. Bel-
lus, Eds., George-Thieme Verlag, Stuttgart, Vol. 27, 2004,
p. 511.
[2] J. J. Tufariello, “1,3-Dipolar Cycloaddition Chemistry,”
In: A. Padwa, Ed., Wiley, New York, Vol. 2, 1984, p. 83.
[3] A. Padwa and A. M. Schoffstall, “Advances in Cycload-
dition,” In: D. P. Curran, Ed., JAI Press, Greenwich, Vol.
2, 1990, p. 2.
[4] A. Padwa, “Synthetic Applications of 1, 3-Dipolar Cy-
cloaddition Chemistry toward Heterocycles and Natural
Products,” In: W. H. Pearson, Ed., Wiley and Sons, Ho-
boken, 2003, pp. 1-83.
[5] K. V. Gothelf and K. A. JØrgensen, “Asymmetric 1,3-
Dipolar cycloaddition Reactions,” Chemical Reviews, Vol.
98, No. 2, 1998, pp. 863-910. doi:10.1021/cr970324e
[6] M. Frederickson, “Optically Active Isoxazolidines via A-
symmetric Cycloaddition Reactions of Nitrones with Al-
kenes: Applications in Organic Synthesis,” Tetrahedron,
Vol. 53, No. 2, 1997, pp. 403-425.
doi:10.1016/S0040-4020(96)01095-2
[7] J. J. Tufariello, “1, 3-Dipolar Cycloaddition Chemistry,”
In: A. Padwa, Ed., Wiley and Sons, New York, 1984, pp.
83-167.
[8] U. Chiacchio, A. Rescifina, G. Romeo and O. A. Attanasi,
“Targets in Heterocyclic Systems,” In: D. Spinelli, Ed.,
Italian Society of Chemistry, Rome, Vol. 1, 1997, p. 225.
[9] P. Merino, S. Franco, F. L. Merchan and T. Tejero, “Nu-
cleophilic Additions to Chiral Nitrones: New Approaches
to Nitrogenated Compounds,” Synlett, Vol. 2000, No. 4,
2000, pp. 442-454. doi:10.1055/s-2000-6555
[10] M. Lombardo and C. Trombini, “Nucleophilic Additions
to Nitrones,” Synthesis, No. 6, 2000, pp. 759-774.
doi:10.1055/s-2000-6269
[11] P. Merino, “New Developments in Nucleophilic Addi-
tions to Nitrones,” Comptes Rendus Chimie, Vol. 8, No. 5,
2005, pp. 775-788. doi:10.1016/j.crci.2005.02.013
[12] R. A. Mekheimer, A. M. Abdel Hameed and K. U. Sadek,
“Solar Thermochemical Reactions: Four-Component Syn-
thesis of Polyhydroquinoline Derivatives Induced by So-
lar Thermal Energy,” Green Chemistry, Vol. 10, No. 5,
2008, pp. 592-593. doi:10.1039/b715126h
[13] R. A. Mekheimer, M. A. Ameen and K. U. Sadek, “Solar
Thermochemical Reactions II: Synthesis of 2-Amino-
Copyright © 2011 SciRes. GSC