L. Y. CAO ET AL.

Copyright © 2011 SciRes. JMF

124

7. References

[1] J. Hull, “Options, Futures, and Other Derivatives,” 5th

Edition, Prentice Hall, Upper Saddle River, 2003.

[2] R. Jarrow and S. Turnbull, “Derivative Securities,”

Thomson Learning Company, Belmont, 1999.

[3] M. C. Fu and J. Q. Hu, “Sensitivity Analysis for Monte

Carlo Simulation of Option Pricing,” Engineering and

Informational Sciences, Vol. 9, No. 3, 1995, pp. 417-446.

doi:10.1017/S0269964800003958

[4] P. Glasserman, “Monte Carlo Methods in Financial En-

gineering,” Springer, New York, 2004.

[5] M. C. Fu, “What You Should Know about Simulation

Derivatives,” Naval Research Logistics, Vol. 55, No. 8,

2006, pp. 723-736. doi:10.1002/nav.20313

and

nderson and B. L. Nelson, Eds., Handbooks in Opera-

and Management Science, Elsevier,

, pp. 575-616.

[6] M. C. Fu, “Stochastic Gradient Estimation,” In: S. G.

He

tions Research

sterdam, 2008Am-

[7] M. Broadie and P. Glasserman, “Estimating Security

Price Derivatives Using Simulation,” Management Sci-

ence, Vol. 42, No. 2, 1996, pp. 269-285.

doi:10.1287/mnsc.42.2.269

[8] F. Black and M. Scholes, “The Pricing of Options and

Corporate Liabilities,” Journal of Political Economy, Vol.

81, No. 3, 1973, pp. 637-654. doi:10.1086/260062

[9] R. C. Merton, “Theory of Rational Option Pricing,” Jour-

nal of Economics and Management Science, Vol. 4, No. 1,

1973, pp. 141-183.

[10] D. Madan and E. Seneta, “The Variance Gamma(VG)

Model for Share Market Returns,” Journal of Business,

Vol. 63, No. 4, 1990, pp. 511-524. doi:10.1086/296519

[11] D. Madan and F. Milne, “Option Pricing with V.G. Mar-

tingale Components,” Mathematical Finance, Vol. 1,

1991, pp. 39-55.

doi:10.1111/j.1467-9965.1991.tb00018.x

[12] D. Madan, P. Carr and E. Chang. “The Variance Gamma

Processes and Option Pricing,” European Finance Re-

view, Vol . 2 , No. 1, 1998, pp. 79- 10.

doi:10.1023/A:1009703431535

[13] M. C. Fu, “Variance-Gamma and Monte Carlo,” Advances

in Mathematical Finance, Springer, 2007, pp. 21-35.

doi:10.1007/978-0-8176-4545-8_2

s for Variance [14] L. Cao and M. C. Fu, “Estimating Greek

Gamma,” Proceedings of the 2010 Winter Simulation

Conference, Baltimore, 5-8 December 2010, pp. 2620-

2628. doi:10.1109/WSC.2010.5678958

ing Gradient Estimation

on-

Nevada, 2-5 January

.

and Z. F. Guo, “Delta Hedging with Deltas from a

[15] L. Cao and Z. F. Guo, “Apply

Technique to Estimate Gradients of European call fol-

lowing Variance-Gamma,” Proceedings of Global C

ference on Business and Finance,

2011.

[16] L. Cao and Z. F. Guo, “A Comparison of Gradient Esti-

mation Techniques for European Call Options,” Ac-

counting & Taxation, Forthcoming, 2011

[17] L. Cao and Z. F. Guo, “A Comparison of Delta Hedging

under Two Price Distribution Assumptions by Likelihood

Ratio,” International Journal of Business and Finance

Research, Forthcoming, 2011.

[18] L. Cao

Geometric Brownian Motion Process,” Proceedings of

International Conference on Applied Financial Economic,

Samos Island, March 2011.