Journal of Mathematical Finance, 2011, 1, 90-97
doi:10.4236/jmf.2011.13012 Published Online November 2011 (http://www.SciRP.org/journal/jmf)
Copyright © 2011 SciRes. JMF
Stochastic Volatility Jump-Diffusion Model
for Option Pricing
Nonthiya Makate, Pairote Sattayatham
School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima, Thailand
E-mail: nonthiyam@hotmail.com, pairote @ s ut . ac.t h
Received July 26, 2011; revised September 2, 2011; accepted Septembe r 15, 2011
Abstract
An alternative option pricing model is proposed, in which the asset prices follow the jump-diffusion model
with square root stochastic volatility. The stochastic volatility follows the jump-diffusion with square root
and mean reverting. We find a formulation for the European-style option in terms of characteristic functions
of tail probabilities.
Keywords: Jump-Diffusion Model, Stochastic Volatility, Characteristic Function, Option Pricing
1. Introduction
Let be a probability space with filtration
. All processes that we shall consider in this
section will be defined in this space. An asset price
model with stochastic volatility has been defined by
Heston [1] which has the following dynamics:
,,P

0
ttT

ddd
tt tt
S
SS tvW

, (1)

,dd
v
ttt
vvtv
 
 d
t
W
where t is the asset price, S
is the rate of return of
the asset, t is the volatility of asset returns, v0
is
a mean-reverting rate,
 is the long term variance,
0
is the volatility of volatility, and are
standard Brownian motions corresponding to the proc-
esses t and t, respectively, with constant correlation
S
t
Wv
t
W
S v
. In 1996, Bate [2] introduced the jump-diffusion sto-
chastic volatility model by adding log normal jump t
to the Heston stochastic volatility model. In the original
formulation of Bate, the model has the following form:
Y

dd d
S
tttt ttt
SStvdW SYN
 S
, (2)

dd
 
 v
ttt
vvtvd
t
W,
where is the Poisson process which corresponds to the
underlying asset t, t is the jump size of asset price
return with log normal distribution and t means that
there is a jump the value of the process before the jump
is used on the left-hand side of the formula. Moreover, in
2003, Eraker Johannes and Polson [3] extended Bate’s
work by incorporating jumps in volatility and their
model is given by
S
t
NS YS
ddd
S
tttttt
SS tvW SYN
 d
S
t
, (3)
ddd
vv
ttttv
vvtvWZ
 
 d
t
N.
Eraker et al. [3] developed a likelihood-based estima-
tion strategy and provided estimates of parameters, spot
volatility, jump times, and jump sizes using S&P 500 and
Nasdaq 100 index returns. Moreover, they examined the
volatility structure of the S&P and Nasdaq indices and
indicated that models with jumps in volatility are pre-
ferred over those without jumps in volatility. But they
did not provide a closed-form formula for the price of a
European call option.
In this paper, we would like to consider the problem of
finding a closed-form formula for a European call option
where the underlying asset and volatility follow the Model
(3). This formula will be useful for option pricing rather
than an estimation of it as appeared in Eraker’s work.
The rest of the paper is organized as follows. In Sec-
tion 2, we briefly discuss the model descriptions for the
option pricing. The relationship between stochastic dif-
ferential equations and partial differential equations for
the jump-diffusion process with jump stochastic volatil-
ity is presented in Section 3. Finally, a closed-form for-
mula for a European call option in terms of characteristic
functions is presented.
2. Model Descriptions
It is assumed that a risk-neutral probability measure
91
N. MAKATE ET AL.
exists, the asset price t under this measure follows a jump-
diffusion process, and the volatility t follows a pure mean
reverting and square root diffusion process with jump, i.e.
our models are governed by the following dynamics:
Sv


ddd
SS
tt d
S
t ttt
SSr mtvSYN
 
t
W

, (4)
dddd
vv
tt ttt
vvtWZN
 
 
t
v,
where t, t, , S v
,
, and are defined as
in Bate’s model, is the risk-free interest rate, and
are independent Poisson processes with constant in-
tensities
S
t
Wv
t
W
rS
t
N
v
t
NS
and v
respectively. is the jump size
of the asset price return with density
t
Y
Y
and
:m
t and t
EY 
Z
is the jump size of the volatility
with density Z. Moreover, we assume that the jump
processes and are independent of standard
Brownian motions and .
z
t
N
S
t
W
X
S
t
Nv
v
t
W
3. Partial Integro-D if f e r en t i al Equations
Consider the process where

12
,
ttt
XX
 

1
t
X
and

2
t
X
are processes in and satisfy the following
equations:
 

 


 
112 12
11
d,,,,
ttt tt
tt
 
11
dt
1
d
t
d
X
ft XXtW
XY

XXt
N

XXt
g
dg
(5)
 

 


212 12
22
2
d,,,,
d
ttttt
tt
X ftXXtW
ZN

2
d
t
where 112
,,
f
gf and 2
g
are all continuously differenti-
able, and are standard Brownian motions

1
t
W

2
d
t
W

with
 
12
d,


Corr Wtt
W, and are

1
t
N

2
t
N
independent Poisson processes with constant intensities

1
and

2
respectively.
Since every compound Poisson process can be repre-
sented as an integral form of a Poisson random measure
[4] then the last term on the right hand side of (5) can be
written as follows:
 

11 11
00
dd
tt
ss snnsQ

1
1
t
N
n
d,
X
YNXYqJ sq



X
N
n



2
2
1
00
dd
t
tt
ssnRd,
Z
NZrJs


r
where n are i.i.d. random variables with density Y
Y
and Q
J
is a Poisson random measure of the process

1
t
1
tn
n
with intensity measure ,
N
QY

ddqt


1
Yn
Z
are
i.i.d. random variables with density and

,z
Z
R
J
is a
Poisson random measure of the process with

2
1
t
N
t
n
R
n
Z
intensity measure .


2dd
Zrt

Let
12
,Uxx be a bounded real-valued function and
twice continuously differentiable with respect to 1
x
and
2
x
and

 
 
12 12
121 2
,,, ,
TT tt
uxxtEUX XXxXx

(6)
By the two dimensional Dynkin formula [5], is a
solution of the partial integro-differential equation (PIDE)
u



12
12
(1)
12 12
(2)
12 12
,,
0,,
,, ,,d
,, ,,d
Y
Z
uxxt uxxt
t
uxyxtuxxty y
uxxztuxxtz z







subject to the final condition

12 12
,, ,uxxT Uxx.
The notation is defined by


 

12 12
12 12
12
22
212 12
112
2
12
1
2
212
22
2
,, ,,
,,
,, ,,
1
2
,,
1
2
uxxt uxxt
Au xxtff
xx
uxxt uxxt
ggg
xx
x
uxxt
gx





(7)
4. A Closed-Form Formula for the Price of a
European Call Option
Let C denote the price at time t of a European style call
option on the current price of the underlying asset
with strike price and expiration time .
t
S
K T
The terminal payoff of a European call option on the
underlying stock with strike price is
t
SK
max
,0
T
SK.
This means that the holder will exercise his right only
if and then his gain is T. Otherwise, if
T
SKSK
T
SK, then the holder will buy the underlying asset
from the market and the value of the option is zero.
Assuming the risk-free interest rate is constant
over the lifetime of the option, the price of the European
call at time t is equal to the discounted conditional
expected payoff
r
Copyright © 2011 SciRes. JMF
N. MAKATE ET AL.
92




 



()
()
,,;,
max, 0,
,d ,d
1,d
e
(,)d
1(,)d
[|,]
e
tt
rT tTtt
rT tTTttTTtt T
KK
tTTttT
rT tK
t
rT tTtt T
K
tTTttT
TttK
rT t
CSvtKT
eE SKSv
eSPSSvS KPSSvS
SSPSSvS
S
KePSSvS
SSPSSvS
ESSv
K




















()
12
(,)d
(,,;,)(,,;,)
Ttt T
K
rTt
ttttt
PSSvS
SPSvtKTKePSvtKT


(8)
where is the expectation with respect to the risk-
E
neutral probability measure,
,
Ttt
P
SSv
is the cor-
responding conditional density given and
,
tt
Sv


1,,;,,d,
ttTTtt TTtt
K
PSvtKTSP SSvSESSv






Note that 1 is the risk-neutral probability that
(since the integrand is nonnegative and the inte-
gral over is one), and finally that
P
T
SK
0,


2,,;,, d
Pr ob(|,)
ttTttT
K
Tt
PSvtKTPSSvS
SKSv

t
is the risk-neutral in-the-money probability. Moreover,

,e
rTt
Ttt t
ESSvS


for . 0t
Assume that the asset price t and the volatility t
satisfy (4), we would like to compute the price of a
European call option with strike price
S v
K
and maturity
. To do this, we make a change of variable from t
to , i.e. where satisfies (4) and its inverse
T S
ln
t
L
tt
St
S
L
t. Denote the logarithm of the strike
price. By the jump-diffusion chain rule, satisfies
the SDE
SelnkK
ln t
S

lnddln 1d
2

 


SS
t
ttt
v
dSrmt vWYN
S
tt
(9)
Applying the two-dimensional Dynkin formula [5] for
the price dynamics (9) and volatility t in system (4),
we obtain the value of a European-style option, as a
function of the stock log-return denoted by
v
t
L
ln
,,
,,
t
t
L
S
tt
v




ln
,,;,;,
,,; ,
;, ,
k
tt t
K
t
CLvtkTCevteT
Cevte T
CS tKT
i.e.,


,,;,max T
L
e,0 ,
rT ttt
ClvtkTeEKL lv v


and satisfies the following PIDE:



0,,;
,,;, ,,;,d
,,;, ,,;,d
SY
vZ
CClvtkT
t
ClyvtkTvtkTy y
ClvztkTvtkTzz






 




 ,
Cl
Cl


(10)
Here the operator as in (7) is defined by
 
22
2
2
2
,,
;,
1
2
1
2
SCC
ClvtkTrmvv
lv
CC
vv
lvl
C
v



  

 






2
1
2
C
vr


In the current state variable, the last line of (8) becomes


12
,,;, ,,;,,,;,
lkrTt
ClvtkTeP lvtkTePlvtkT


(11)
where
,,;,:,,;,,1,2
lk
jj
PlvtkTPevteT j
.
The following lemma shows the relationship between
and in the option value of (11).
1
P
2
P
Lemma 1 The functions and 2 in the option
value of (11) satisfy the following PIDEs
1
P
P




11
1
1
1
1
0,,;,
1,,:,
S
Sy Y
PP
PlvtkT v
tl
P
vrmP
v
ePlyvtkT y
 



 







d
y
and subject to the boundary condition at expiration time
tT
;
1,, ;,1
lk
PlvTkT
(12)
moreover, satisfies the equation
2
P

2
22
0,,;,
PPlvtkT rP
t

 


 ,
Copyright © 2011 SciRes. JMF
93
N. MAKATE ET AL.
and subject to the boundary condition at expiration time
;
tT

2,,;,1
lk
PlvTkT
, (13)
The operator is defined by




2
2
2
2
2
2
,,;,
11
:22
1
2
,,;, ,,;,d
,,;, ,,;,d
S
SY
vZ
flvtkT
fff
rmvvv
lv
l
f
f
vvrf
lv v
.
f
lyvtkTflvtkTyy
f
lvztkTf lvTkTzz

 




 



 

 





(14)
Note that if and otherwise 101
lk1lk lk
.
The following lemma shows how to calculate the
functions and as they appeared in Lemma 1.
1
P
2
P
Lemma 2 The functions and can be calculated
by the inverse Fourier transforms of the characteristic
function, i.e.
1
P
2
P
 
0
,,;,
11
,,;, Red
2π


ixk j
j
eflvtkT
PlvtkT x
ix ,
for with denoting the real component of
a complex number. By letting
1, 2jRe[ ]
Tt
.
1) The characteristic function 1
f
is given by

11
,,;, expixlf lvtxtgvh

 
1
,
where




1
1
22
11
1
11 11
2
1e
he
 
 
 



1
SS
g
rmixm

 







1
1
11
11
2
1
1
1
2ln 12
1d
1d
ix y
SY
vZ
zh
e
eyy
ezz

 
 





 

 







,

11ix
 

and

22
11 1

 ix ix.
2) The characteristic function 2
f
is given by

222
,,;, exp

 
f
lvtxtgvhixl r,
where


2
2
22
22
22
22 22
1e
he
 
 
 ,

2ix
S
g
rmr









2
2
22
22
2
2
1
2ln 12
1d1
Sixy v
YZ
zh
e
eyyez

dz
 

 



 


 






 

2ix
 
and

22
22 1ix ix

 .
In summary, we have just proved the following main
theorem.
Theorem 3 The value of a European call option of (4) is


12
,,;, ,,;,,,;,
lkrTt
ClvtkTeP lvtkTePlvtkT


where and are given in Lemma 2.
1
P
2
P
5. Conclusions
This paper has proposed asset price dynamics to accom-
modate both jump-diffusion and jump stochastic vola-
tility. Under this proposed model, an analytical solution
is derived for a European call option via the characteris-
tic function.
6. Acknowledgements
This research is (partially) supported by The Centre of
Excellence in Mathematics, the Commission on Higher
Education (CHE).
Address: 272 Rama VI Road, Ratchathewi District,
Bangkok, Thailand.
7. References
[1] S. L. Heston, “A Close Form Solution for Options with
Stochastic Volatility with Applications to Bond and Cur-
rency Options,” The Review of Financial Studies, Vol. 6,
No. 2, 1993, pp. 327-343. doi:10.1093/rfs/6.2.327
[2] D. Bates, “Jump and Stochastic Volatility: Exchange Rate
Processes Implicit in Deutsche Mark in Options,” Review
of Financial Studies, Vol. 9, No. 1, 1996, pp. 69-107.
tp://dx.doi.org/10.1093/rfs/9.1.69
Copyright © 2011 SciRes. JMF
N. MAKATE ET AL.
Copyright © 2011 SciRes. JMF
94
[3] B. Eraker, M. Johannes and N. Polson, “The Impact of
Jumps in Volatility and Returns,” The Journal of Finance,
Vol. 58, No. 3, 2003, pp. 1269-1300.
doi:10.1111/1540-6261.00566
[4] R. Cont and P. Tankov, “Financial Modeling with Jump
Processes,” CRC Press, Boca Raton, 2004.
[5] F. B. Hanson, “Applied Stochastic Process and Control for
Jump Diffusions: Modeling, Analysis and Computation,”
Society for Industrial and Applied Mathematics, Phila-
delphia, 2007
95
N. MAKATE ET AL.
Appendix
Proof of Lemma 1. We plan to substitute (11) into (10).
Firstly, we compute
 
12
2
 

 
 

krTt krTt
lPP
Cee re
ttt P

12
1





krTt
ll
P
P
CeePe
ll l

12



 

krTt
lPP
Cee
vv v

22
2
11
1
22
2
 

 

krTt
lll
PP
CeeePe
l
ll
2
2
P
l

22
2
11



  

krTt
ll
PP
Ceee
lv lv vlv
2
P

22
2
12
22



 

krTt
lPP
Cee
vv 2
v
,





1
1
,,;, ,,;,
,,;,
,,;,
ly
krTt
Cl yvtkTClvtkT
ePlyvtkT
ePlyvtkT


















12
11
11
11
1
1
,,;,,,;,
,,;, ,,;,
,,;, ,,;,
,,;,,,;,
1,,;,
,,;,







 





krTt
l
ly
ll
krTt
ly
l
eP lvtkTePlvtkT
eeP lyvtkTPlyvtkT
eP lyvtkTeP lvtkT
eP lyvtkTP lvtkT
eePl yvtkT
eP lyvtkT




1
21
,,;,
,,;,,,;,



krTt
PlvtkT
ePlyvtkTP lvtkT
and









12
12
11
22
, ,;,,,;,
, ,;,, ,;,
,,;, ,,;,
, ,;,,,;,
, ,;,,,;,




 












krTt
l
krTt
l
l
krTt
ClvztkTClvtkT
ePlvztkTePlvztkT
eP lvtkTePlvtkT
eP lvztkTP lvtkT
eP lvztkTPlvtkT
We substitute all terms above into (10) and separate it
by assumed independent terms of and . This
gives two PIDEs for the risk-neutralized probability for
: (Equation (15))
1
P2
P
(, ,;,),1,2
j
PlvtkT j

 
2
11111
11
2
22
2
11 1
11 1 1
2
1
11
0()2
22
11, ,;,, ,; ,(, ,;,)d
2
,
S
Sy Y
v
PPPPP
rmv PvvP
tlvl
l
PP P
vvrPePlyvtkTPlyvtkTPlvtkT
lv vv
Plv

 



 






 

 
 




 
  

1
,; ,,,; ,d
Z
ztkTPlvtkTzz


yy
(15)
subject to the boundary condition at the expiration time
according to (12).
tT
By using the notation in (14), PIDE (15) becomes





11
1
1
1
1
1
1
0,,;,
1,,;,
:,,;,
S
Sy Y
PP
PlvtkTv
tl
P
vrmP
v
ePlyvtkT y
PPlvtkT
t
 


 









d
y
For

2,,;,PlvtkT:

22
2
1
02
S
PP
rP rm vv
tl



 






22 2
2
22 2
2
22
22
22
11
22
,,;, ,,;,d
, ,;,,,;,d
SY
vZ
PP P
vv vrP
lv
lv
P lyvtkTP lvtkTyy
PlvztkTPlvtkTzz
 


 
 



 







(16)
subject to the boundary condition at the expiration time
tT according to (13). Again, by using the notation in
(14), PIDE (16) becomes
2
22
0[](,,;,)


PPlvtkT rP
t
2
P
v
2
22
:[](,,;

PPlvtkT
t,).
Copyright © 2011 SciRes. JMF
N. MAKATE ET AL.
96
The proof of Lemma 1 is now completed.
For the characteristic functions for
1, 2j

,,;,
j
PlvtkT,
with respect to the variable are defined by
k

,,;, :d,,;,
ixk
jj
f
lvtxTeP lvtkT

,
with a minus sign to account for the negativity of the
measure d
j
P.
Note that
j
f
also satisfies similar PIDEs

,,;, 0
jjj
fflvtxT
t



, (17)
with the respective boundary conditions
 


,,;,d ,,;,
d
ixk
jj
ixk
ixl
f
lvtxTePlvtkT
ekl
e



 
k
since
d,,;,d1 dd
 
jlk
PlvTkTHl kklk
.
Proof of Lemma 2
1) To solve for the characteristic function explicitly,
letting Tt
be the time-to-go, we conjecture that
the function 1
f
is given by


11
,,;, exp


1
f
lvtxtgvhixl (18)
and the boundary condition
 
11
00 0gh .
This conjecture exploits the linearity of the coefficient
in PIDE (17).
Note that the characteristic function 1
f
always exists.
In order to substitute (18) into (17), firstly we com-
pute
 

1
111
f
g
vh f
t


 
1
1
fixf
l

1
1
fh
v
1
f
2
2
1
1
2
f
x
f
l


2
1
1
fixh f
lv 1


2
2
1
11
2
fhf
v



1
1
1,,;, ,,;,
1,,;,
ixy
f lyvtxtflvtxt
eflvtxt

 




1
11
1
, ,;,,,;,
1,,;,
zh
f lvztxtflvtxt
eflvtxt
 

and




11
1
1
1,,;, 1
1,,;,
yy
yixy
gvhixly
eflyvtxt ee
eeflvtxt


 
 
Substituting all the above terms into (17) and after
canceling the common factor of 1
f
, we get a simplified
form as follows:
 








1
11
2
1
22
11
1
1
02
1
2
1
2
1d
1d.
S
S
SY
vZ
y
zh
ix
g
vhrmv ix
vvh vx
vixhvhm
eyy
ezz
 
 





 






By separating the order and ordering the remaining
terms, we can reduce it to two ordinary differential equa-
tion (ODEs),
v
 


22 2
111
11
1
22
hh ixhix


1
2
x
(19)
and
 






1
11
11d
1d.
SS
SY
vZ
y
zh
ix
g
hrmix
ey
ez
 







m
y
z
(20)
Let
11ix

 and substitute it into (19). We get
 


22 1
111
22
22
11
12
22
11
12
211 11
11
22
2
11
1
2
244 1
12
22
2441
2
1
2
hhhixix
ix ix
h
ix ix
h
hh
 









 





 




 

 


where

22
11 1ix ix

 .
By the method of variable separation, we have
2
1
11 11
11
22
2d d


 




h
hh
.
Copyright © 2011 SciRes. JMF
N. MAKATE ET AL.
Copyright © 2011 SciRes. JMF
97
Using partial fractions, we get
1
11 11
111
22
11 1
dd





 



h
hh
.
 
0
,,;,
11
,,;, Red
2π
j
j
ixk
eflvtkT
PlvtkT x
ix


 


(21)
for 1,2j
.
To verify (21), firstly we note that




 


ln lnln ,
,d,
d,,;, d
,,;, .
t
ttt
ttj
j
j
ix SK
t
ix
ix Lk
ixk ixlixk ixk
ixk
lk
Ee SLvv
EeLlvv ePlvtkT
eePlvtkTee lkk
eflvtkT


 









Integrating both sides, we obtain
11
12
1
11
12
ln
hC
h








. ,;,
Using boundary condition1(0)0h
, we get
11
11
lnC



.
Then
Solving for , we obtain
1
h





1
1
22
11
12
11 11
1e
he
 

.
In order to solve

1
g
explicitly, we substitute
1
h
into (20) and integrate with respect to
on both sides.
Then we get











1
1
1
11
11
2
1
1
1
2ln12
1d
1d
SS
SY
vZ
y
zh
ix
grmixm
e
eyy
ezz


 




 


 


 






Proof of 2). The details of the proof are similar to case 1).
Hence, we have






0
0
0
0
ln ln
,,;,
11Re d
2π
ln ,
11Re d
2π
11Red ,
2π
sin
11 d,
2π
11
sgn
2π
j
ttt
tt
tt
ixk
ix SK
t
ix lk
eflvtkTx
ix
Ee SLvv
x
ix
e
ExLlv
ix
xl k
ExLlv
x
Elk











222
,,;, exp
f
lvtxtgvhixl r

 
v
v







 






 





0
sin d,
11
sgn ,
22
1,
tt
tt
lk tt
xxLlvv
x
ElkLlvv
ELlvv







 




2
where

22
,,gh

and are as given in the Lemma.
2
We can thus evaluate the characteristic functions in
explicit form. However, we are interested in the risk-neu-
tral probabilities . These can be inverted from
the characteristic functions by performing the following
integration
,1,2
j
Pj
where we have used the Dirichlet formula
0
sin d1
xx
x

and the function is defined as if ,
0 if
sgn
0

sgn 1x0x
x
and –1 if 0
x.