J. P. N. BISHWAL

Copyright © 2011 SciRes. JMF

62

portant problem is estimation of H, for instance based on

second order quadratic variation and remains to be in-

vestigated.

5. References

[1] A. J. Wolfe, “On a Continuous Analogue of the Stochas-

tic Difference Equation Xn = ρXn + Bn,” Stochastic Proc-

esses and their Applications, Vol. 12, No. 3, 1982, pp. 301-

312. doi:/10.1016/0304-4149(82)90050-3

[2] O. E. Barndorff-Nielsen and N. Shephard, “Non-Gaus-

sian Ornstein-Uhlenbeck-Based Models and Some of Their

Uses In Financial Economics (with Discussion),” Journal

of the Royal Statistical Society, Series B, Vol. 63, No. 2,

2001, pp. 167-241. doi:/10.1111/1467-9868.00282

[3] O. E. Barndorff-Neilsen and N. Shephard, “Normal Mo-

dified Stable Processes,” Theory of Probability and Ma-

thematical Statistics, Vol. 65, 2002, pp. 7-20.

[4] D. P. Gaver and P. A. W. Lewis, “First Order Autore-

gressive Gamma Sequences and Point Processes,” Ad-

vances in Applied Probability, Vol. 12, No. 3, 1980, pp.

727-745. doi:/10.2307/1426429

[5] R. A. Davis and W. P. McCormick, “Estimation for First

Order Autoregressive Processes with Positive or Bounded

Innovations,” Stochastic Processes and Their Applica-

tions, Vol. 31, No. 2, 1989, pp. 237-250.

doi:/10.1016/0304-4149(89)90090-2

[6] B. Neilsen and N. Shephard, “Likelihood Analysis of a First

Order Autoregressive Model with Exponential Innovations,”

Journal of Time Series Analysis, Vol. 24, No. 3, 2003, pp.

337-344. doi:/10.1111/1467-9892.00310

[7] P. J. Brockwell, R. A. Davis and Y. Yang, “Estimation

for Non-Negative Levy Driven Ornstein-Uhlenbeck Proc-

esses,” Journal of Applied Probability, Vol. 44, No. 4,

2007, pp. 977-989. doi:/10.1239/jap/1197908818

[8] G. Jongbloed, F. H. van der Meulen and A. W. van der

Vaart, “Nonparametric Inference for Levy Driven Orn-

stein-Uhlenbeck Processes,” Bernoulli, Vol. 11, No. 5,

2005, pp. 759-791. doi:/10.3150/bj/1130077593

[9] J. P. N. Bishwal, “Parameter Estimation in Stochastic

Differential Equations,” Springer-Verlag, Berlin, 2008.

doi:/10.1007/978-3-540-74448-1

[10] F. Comte and E. Renault, “Long Memory in Continuous-

Time Stochastic Volatility Models,” Mathematical Fi-

nance, Vol. 8, No. 4, 1998, pp. 291-323.

doi:/10.1111/1467-9965.00057

[11] F. Comte, L. Coutin and E. Renault, “Affine Fractional

Stochastic Volatility Models with Application to Option

Pricing,” Recherche, Vol. 13, No. 1993, 2010, pp. 1-35.

[12] T. Marquardt, “Fractional Levy Processes with Applica-

Tion to Long Memory Moving Average Processes,” Ber-

noulli, Vol. 12, No. 6, 2006, pp. 1009-1126.

doi:/10.3150/bj/1165269152

[13] T. Marquardt, “Multivariate FICARMA Processes,” Jour-

nal of Multivariate Analysis, Vol. 98, No. 9, 2007, pp.

1705-1725. doi:/10.1016/j.jmva.2006.07.001

[14] C. Bender and T. Marquardt, “Stochastic Calculus for

Convoluted Levy Processes,” Bernoulli, Vol. 14, No. 2,

2007, pp. 499-518. doi:/10.3150/07-BEJ115

[15] S. Haug and C. Czado, “An Exponential Continuous

Time GARCH Process,” Journal of Applied Probability,

Vol. 44, No. 4, 2007, pp. 960-976.

doi:/10.1239/jap/1197908817

[16] S. Haug and C. Czado, “Fractionally Integrated ECO-

GARCH Process,” Sonderforschungsbereich, Vol. 386,

No. 484, 2006.

[17] C. Czado and S. Haug, “An ACD-ECOGARCH(1,1)

Model,” Journal of Financial Econometrics, Vol. 8, No.

3, 2010, pp. 335-344. doi:/10.1093/jjfinec/nbp023

[18] S. Haug, C. Kluppelberg, A. Lindner and M. Zapp,

“Method of Moment Estimation in the COGARCH(1,1)

Model,” Econometrics Journal, Vol. 10, No. 2, 2007, pp.

320-341. doi:/10.1111/j.1368-423X.2007.00210.x

[19] D. Straumann and T. Mikosch, “Quasi-Maximum Like-

lihood Estimation in Conditionally Heteroscedastic Time

Series: A Stochastic Recurrence Equations Approach,”

Annals of Statistics, Vol. 34, 2006, pp. 2449-2495.

doi:/10.1214/009053606000000803

[20] S. Haug and C. Czado, “Quasi Maximum Likelihood Esti-

mation and Prediction in the Compound Poisson ECO-

GARCH(1,1) Model,” Sonderforschungsbereich, Vol.

386, No. 516, 2006.

[21] D. Straumann, “Estimation in Conditionally Heterosce-

dastic Time Series Models,” Lecture Notes in Statistics,

Vol. 181, Springer-Verlag, Berlin, 2005.