
M. F. ZAATER
812
pearance were solvolysis, hydrloysis, photo-Fries con-
certed rearrangement and dimarization. These finding
indicate the photolabilaty of IPC under UV exposure and
provides valuable information both to chemists and en-
vironmentalists.
5. References
[1] K. A. Hassall, “The Biochemistry of Pesticides,” Mac-
Millan Press Ltd., London, 1990, pp. 313-318.
[2] I. R. Hill and S. J. L. Wright, “Pesticide Microbiology,”
Academic Press, London, 1978, pp. 79-136.
[3] G. G. Still and E. R. Mansager, “Aryl-Hydroxylation of
Isopropyl 3-Chlorocarbanilate by Soybean Plants,” Phy-
tochemistry, Vol. 11, No. 2, 1972, pp. 515-520.
doi:10.1016/0031-9422(72)80006-2
[4] H. D. Puurow, M. Canle, J. A. S. Palla and S. Steenken,
“Reactions and Pathway Mechanism of Photodegradation
of Pesticides,” Journal of Photochemistry and Photo-
biology, Vol. 67, No. 2, 2002, pp. 71-108.
[5] C. Tomlin, “Pesticide Manual,” 10th Edition, British Crop
Protection Council, Blackwell Science Publishing, Cam-
bridge, 1994.
[6] Farm Chemicals Handbook, Mesiter Publishing Campany,
Vol. 86, 2000.
[7] G. G. Still and R. A. Herrett, “Methylcarbamate, Carbani-
late and Acylanilide,” In: P. C. Kearney and D. D. Kauf-
man, Eds., Herbicides, Chemistry, Degradation and
Mode of Action, Marcel Dekker Inc., New York, 1976.
[8] C. M. Menzie, “Metabolism of Pesticides,” Updated II,
Special Science Report, Wildlife No. 212, U.S. Depart-
ment of Interior, Washington. D. C., 1978.
[9] I.-S. You and R. Bartha, “Metabolism of 3,4-Dichloro-
aniline by Pseudomonas Putida,” Journal of Agricultural
and Food Chemistry, Vol. 30, No. 2, 1982, pp. 274-277.
doi:10.1021/jf00110a014
[10] J. L. Marty, T. Khafif, D. Vega and J. Bastida, “Degrada-
tion of Phenylcarbamates by Pseudomonas Alcaligenes
isolated from Soil,” Soil Biology and Biochemistry, Vol.
18, No. 6, 1986, pp. 649-653.
doi:10.1016/0038-0717(86)90089-1
[11] G. G. Still and E. R. Mansager, “Soybean Shoot Metabo-
lism of Isopropyl 3-Chlorocarbanilate: Ortho and Para
Aryl Hydroxylation,” Pesticide Biochemistry and Physi-
ology, Vol. 3, No. 1, 1973, pp. 87-95.
doi:10.1016/0048-3575(73)90013-8
[12] D. Cole, “Oxidation of Xenobiotics in Plants,” In: D. H.
Huston and T. R. Roberts, Eds., Progress in Pesticide
Biochemistry and Toxicology, John Wiley and Sons, New
York, Vol. 3, 1983; pp. 139-1446.
[13] G. D. Paulson, A. M. Jacobsen, R. G. Zaylskie and V. J.
Feil, “Isolation and Identification of Propham Metabolites
from the Rat and Goat,” Journal of Agricultural and
Food Chemistry, Vol. 21, No. 5, 1973, pp. 804-810.
doi:10.1021/jf60189a008
[14] C. C. Irving, “Enzymatic N-Hydroxylation of the Car-
cinogen 2-Acetylaminofluorne and the Metabolism of
N-Hydroxy- 2-Acetylamino-Fluorene-4-C14 in Vitro,”
The Journal of Biological Chemistry, Vol. 239, 1964, p.
1589.
[15] D. L. Heikes, “Mass Spectral Identification of a Metabo-
lite of Chlorpropham in Potatoes,” Journal of Agricul-
tural and Food Chemistry, Vol. 33, No. 2, 1985, pp.
246-249. doi:10.1021/jf00062a023
[16] N. L. Wolfe, R. G. Zepp, D. F. Parris and G. L. Baughman,
“Carbaryl, Propham and Chlorpropham: A Comparison
of the Rates of Hydrolysis and Photolysis with the Rate
of Biolysis,” Water Research, Vol. 12, No. 8, 1978, pp.
565-571. doi:10.1016/0043-1354(78)90134-3
[17] L. C. Mitchell, “The Effect of Ultraviolet Light (2537A°)
on 141 Pesticide Chemicals,” Journal of the Association
of Official Agricultural Chemists, Vol. 44, 1961, pp.
643-712.
[18] D. G. Crobsy, “Herbicide Photodecomposition,” In: D. C.
Kearney and D. D. Kaufman, Eds., Herbicides, Chemistry
Degradation and Mode of Action, Marcel Dekker, Inc.,
New York, Vol. 2, 1976, pp. 835-890.
[19] G. W. Ware, “Review of Environment Contamination &
Toxicology,” Google Books Results, 2000; pp. 113-116.
[20] D. Masilamani and R. O. Hutchins, “Photoinduced Rear-
rangement and Related Chemicals of Ethyl
N-PhenylcarBamate,” The Journal of Organic Chemistry,
Vol. 41, 9761, pp. 3687-3691.
[21] W. Bahnemann, M. Muneer and M. Haque, “Titanium
Photcatalysed Degradation of Selected Organic Pollutants
in Aqueous Suspension,” Catalyst Today, Vol. 124, No.
3-4, 2007, pp. 133-148.
doi:10.1016/j.cattod.2007.03.031
[22] F. F. Guzik, “Photolysis of Isopropyl-N-3-Chloro-Car-
bani-late in Water,” Journal of Agricultural and Food
Chemistry, Vol. 26, No. 1, 1978, pp. 53-55.
doi:10.1021/jf60215a026
[23] aeru@herts.ac.uk /footprint, 2008.
[24] T. Mill, “Chemical and Photochemical Oxidation,” In: O.
Hutzinger, Ed., The Handbook of the Environmental
Chemistry, Springer-Verlag, Berlin, 1980, pp. 77-104.
[25] R. G. Zepp, “Experimental Approaches to Environmental
Photochemistry,” In: O. Hutzinger, Ed., The Handbook of
the Environmental Chemistry, Springer-Verlag, Berlin,
1982, pp. 19-42.
[26] T. Mill, “Prediction of the Environmental Fate of Tetra-
chlorodibenzodioxin,” In: M. A. Kamrin and P. W. Rod-
gers, Eds., Dioxin in the Environment, Hemisphere Publ.
Corp, Washington D. C., 1985; pp. 173-193.
[27] D. R. Arnold and P. C. Wong, “The Photochemistry of
Chloroaromatic Compunds,” Journal of the American
Chemical Society, Vol. 99, No. 10, 1977, pp. 3361-3366.
doi:10.1021/ja00452a029
[28] G. Papageorigou and A. B. Corre, “Mechanism of Pho-
to-Fries Photolysis of Carbamtes,” Photochemical &
Photobiological Sciences, Vol. 4, 2005, pp. 216-220.
Copyright © 2011 SciRes. AJAC