
A. S. Subramanian et al. / J. Biomedical Science and En gineering 2 (2009) 439-444
SciRes Copyright © 2009 http://www.scirp.org/journal/JBISE/
444
Table 2sitivity and positive predictivity r the testing s
Ven Ar-TP FP FN sitive Pr
ctivity (%Sensitivity (%)
. Senfoet.
Openly accessible at
tricular
rhythmia
Po e-
di)
VT 30 1 0 96.77 100
VFL
VFIB
13
4
0
1
2
0
100
80
86.67
100
Tabl shows that te BP network misclashe
properythmi mcasee VFL
classified as VFIB, this is ause energy level in the
equency bands is high and common between VFL
V
ents, IEEE Signal
2(7).
Wavelets and filter banks: Theory and
rs,
ibrillation, IEEE Eng. Boil., 152–159.
matic im-
detection by a regression test on the autocor-
ion algorithm for cardiac arrhythmia classification,
of ventricular fibrillation using neural net-
–349.
-
lter banks, IEEE
Wavelet decomposition for detection and classifi-
nal of Elec-
l networks, Journal on Medical
s, Journal of
analysis, IEEE Trans. on Sig-
nd radial basis neural networks for
tection, Proceedings of World Congress on Medical
Physics and Biomedical Engineering, Chicago, USA.
[10] D. E. Rumelhart, G. E. Hinton, and R. J Williams, (1986)
Learning representations by back-propagation erro
Nature.
[11] V. X. Afonso and W. J. Tompkins, (1995) Detecting ven-
tricular f
[12] A. Langer, M. S. Heilman, and M. M. Mower, (1976)
Considerations in the development of the auto
e 1
arrh
h
so
sified t
case was a ine s, on
becthe
and relation function, Med. Biol. Eng. Comput., 25(3), 241–
249.
[14] S. W. Chen, P. W. Clarkson, and Q. Fan, (1996) A robust
detect
plantable defibrillator, Medical Instrumentation, 10(3),
163–167.
[13] S. Chen, N. V. Thakor, and M. M. Mover, Ventricular
fibrillation
fr
FIB. The algorithm is able to classify VT and VFIB
with 100% sensitivity. The positive predictivity for VFL
episodes is 100%. The algorithm is reliable by providing
the overall sensitivity of 95.56% and the overall positive
predictivity of 92.26%. The algorithm can be validated
using more number of ECG samples.
REFERENCES
[1] K. Anant, F. Dowla, and G. Rodrigue, (1995) Vector
quantization of ECG wavelet coeffici
IEEE Transactions on Biomedical Engineering, 43,
1120–1125.
[15] R. H. Clayton, A. Murray, and R.W. F. Campbell, (1994)
Recognition
works, Med. Bio. Eng. Comp., 32, 217–220.
[16] S. Kuo and R. Dillman, (1978) Computer detection of
ventricular fibrillation, Computer Cardiology, 347
Processing Letters,
[2] M. Vetterli, (1992)
design, IEEE Transactions on Signal Processing, 2207–
2232.
[3] R. M. Rao and A. S. Bopardikar, (1998) Wavelet trans-
forms: Introduction to theory and applications, Addison
Wesley Longman.
[4] L. Khadra, A. S. Al-Fahoum, and H. Al-Nashash, (1997)
Detection of life threatening cardiac arrhythmia using the
wavelet transformation, Med. Biol. Eng. Comput., 35,
626–632.
[5] P. S. Addison, J. N. Watson, G. R. Clegg, M. Holzer, F.
Sterz, and C. E. Robertson, (2000) Evaluating arrhyth-
mias in ECG signals using wavelet transforms, IEEE En-
gineering in Medicine and Biology Magazine, 19, 104–
109.
[6] H. A. N. Dinh, D. K. Kumar, N. D. Pah, and P. Burton,
(2001) Wavelets for QRS detection, Proceedings of the
23rd Annual Conference, IEEE EMS, Istanbul, Turkey,
35–38.
[7] S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels,
(1999) Wavelet transform based QRS complex detector,
IEEE Transaction on Biomedical Engineering, 46(7),
838–848.
[8] I. Romero, L. Serrano, and Ayesta, (2001) ECG fre-
quency domain features extraction: A new characteristic
for arrhythmias classification, Conference of the IEEE
Engineering in Medicine and Biology Society.
[9] S. M. Szilagyi and L. Szilagyi, (2000) Wavelet transform
and neural network based adaptive filtering for QRS de-
[17] S. Barro, R. Ruiz, D. Cabello, and J. Mira, (1989) Algo-
rithmic sequential decision-making in the frequency do
main for life threatening ventricular arrhythmias and
imitative artifacts: A diagnostic system, Journal on Bio-
medical Engineering, 11(4), 320–328.
[18] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo,
(1999) ECG beat detection using fi
Transactions on Biomedical Engineering, 46(2), 192–
202,.
[19] G. Selvakumar, B. K. Bhoopathy, and R. B. Chidhambara,
(2007)
cation of critical ECG arrhythmias, Proc. of the 8th
WSEAS Int. Conf. on Mathematics And Computers in
Biology and Chemistry, Vancouver, Canada.
[20] G. Bortalan and J. L. Willems, (1993) Diagnostic ECG
classification based on neural networks, Jour
trocardiology, 26, 75–79.
[21] Z. Dokur, T. Olmez, and E. Yazgan, (1997) Detection of
ECG waveforms by neura
Engineering and Physics, 19(8), 738–741.
[22] L. Edenbrandt, B. Heden, and O. Pahlm, (1993) Neural
networks for analysis of ECG complexe
Electrocardiology, 26, 74.
[23] R. Silipo and C. Marchesi, (1998) Artificial neural net-
works for automatic ECG
nal Processing, 46.
[24] A. S. Al-Fahoum and I. Howitt, (1999) Combined wave-
let transformation a
classifying life threatening cardiac arrhythmias, Med.
Biol. Eng. Comput., 37, 566–573.
[25] MIT-BIH (http://www.physionet.org)