﻿ Application of Differential Transformation Method to Boundary Value Problems of Order Seven and Eight

American Journal of Computational Mathematics
Vol.08 No.03(2018), Article ID:87619,10 pages
10.4236/ajcm.2018.83022

Application of Differential Transformation Method to Boundary Value Problems of Order Seven and Eight

R. B. Ogunrinde, O. M. Ojo

Department of Mathematical Sciences, Ekiti State University, Ado Ekiti, Nigeria

Copyright © 2018 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Received: October 5, 2017; Accepted: September 26, 2018; Published: September 29, 2018

ABSTRACT

This paper presents the use of differential transformation method (DTM), an approximating technique for solving linear higher order boundary value problems. Using DTM, approximate solutions of order seven and eight boundary value problems were developed. Approximate results are given for some examples to illustrate the efficiency and accuracy of the method. The results from this method are compared with the exact solutions.

Keywords:

DTM, Differential Equation, Boundary Value Problems, Numerical Methods

1. Introduction

Higher order boundary value problems arise in the study of hydrodynamics and hydro magnetic stability, astronomy, fluid dynamics, astrophysics, engineering and applied physics. The boundary value problems of higher order have been investigated due to their mathematical importance and the potential for applications in diversified applied sciences [1] [2] [3] .

Explicit weighting coefficients are formulated to implement the Generalized Differential Quadrature Rule (GDQR) for eighth-order differential equations. [4] [5] used Nonic spline and Non polynomial spline technique for the numerical solution of eighth-order linear special case boundary value problems. The methods presented in [6] have also been proven to be second order convergent. [7] employed finite-difference method to find the solution of eighth-order boundary value problems. [8] [9] presented an efficient numerical algorithm using Adomian decomposition method for the solutions of special eighth-order boundary value problem. [10] [11] [12] proposed a relatively new analytical technique, the variational iteration decomposition method (VIDM), for solving the eighth-order boundary value problems. [13] [14] [15] presented the solution of eighth order boundary value problem using octic spline. [16] presented the solutions of eighth order boundary value problems using Adomian decomposition method.

A great deal of interest has been focused on the applications of differential transformation method (DTM) to solve various scientific models [13] . In this paper, we are interested in the application of differential transformation method to solve higher order boundary value problems of order seven and eight. The concept of differential transformation method was first introduced by Zhou in 1986, and it was applied to solve linear and non-linear initial value problems in electric circuit analysis. The method can be used to evaluate the approximating solution by the finite Taylor series and by the iteration procedure describes by the transformed equations obtained from the original equation using the operations of differential transformation [11] [12] .

2. The Differential Transformation Method (DTM)

A kth order differential transformation of a function $y\left(x\right)=f\left(x\right)$ is defined about a point $x={x}_{0}$ as:

$Y\left(K\right)={\left[\frac{{\text{d}}^{k}y\left(x\right)}{\text{d}{x}^{k}}\right]}_{x={x}_{0}}$ (2.1)

where k belongs to the set of non-negative integers, denoted as the K-domain.

The function $y\left(x\right)$ may be expressed in terms of the differential transforms $y\left(K\right)$ as:

$y\left(x\right)={\sum }_{k=0}^{\infty }\left[\frac{{\left(x-{x}_{0}\right)}^{k}}{k!}\right]Y\left(k\right)$ (2.2)

Upon combining 2.1 and 2.2, we obtain: $y\left(x\right)={\sum }_{k=0}^{\infty }\frac{1}{k!}{\left(x-{x}_{0}\right)}^{k}{\left[\frac{{\text{d}}^{k}y\left(x\right)}{\text{d}{x}^{k}}\right]}_{x={x}_{0}}$

Which is actually the Taylor’s series for $y\left(x\right)$ at about $={x}_{0}$ .

From the basic definition of the differential transformation, one can obtain certain laws of transformational operations, some of these, are listed in the following:

1) If $z\left(x\right)=u\left(x\right)±v\left(x\right)$ , then $Z\left(k\right)=U\left(k\right)±V\left(k\right)$

2) If $z\left(x\right)=\alpha u\left(x\right)$ , then $Z\left(k\right)=\alpha U\left(k\right)$

3) If $z\left(x\right)=\frac{\text{d}u\left(x\right)}{\text{d}x}$ then, $Z\left(k\right)=\left(k+1\right)U\left(k+1\right)$

4) If $z\left(x\right)=\frac{{\text{d}}^{2}y\left(x\right)}{\text{d}{x}^{2}}$ then, $Z\left(k\right)=\left(k+1\right)\left(k+2\right)U\left(k+2\right)$

5) If $z\left(x\right)=\frac{{\text{d}}^{m}y\left(x\right)}{\text{d}{x}^{m}}$ then, $Z\left(k\right)=\left(k+1\right)\left(k+2\right)\cdots \left(k+m\right)U\left(k+m\right)$

6) If $z\left(x\right)=u\left(x\right)v\left(x\right)$ then $Z\left(k\right)={\sum }_{l=0}^{k}V\left(l\right)U\left(k-l\right)$

7) If $z\left(x\right)={x}^{m}$ then, $Z\left(k\right)=\partial \left(k-n\right)$ where, $\partial \left(k-n\right)=\left\{\begin{array}{l}1\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }k=n\\ 0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}k\ne n\end{array}$

8) If $z\left(x\right)={\text{e}}^{\lambda x}$ then, $Z\left(k\right)=\frac{\lambda }{k!}$

9) If $z\left(x\right)=\mathrm{sin}\left(\omega x+\alpha \right)$ then, $Z\left(k\right)=\frac{\omega }{k!}\mathrm{sin}\left(\frac{\text{π}k}{2}+\alpha \right)$

10) If $z\left(x\right)=\mathrm{cos}\left(\omega x+\alpha \right)$ then, $Z\left(k\right)=\frac{\omega }{k!}\mathrm{cos}\left(\frac{\text{π}k}{2}+\alpha \right)$

3. The Higher Order Boundary Value Problem

1) even order boundary value problems

Consider the special (2m) order BVP of the form

${y}^{\left(2m\right)}\left(x\right)=f\left(x,y\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}0 (3.1)

With boundary conditions

${y}^{\left(2m\right)}\left(0\right)={\alpha }_{2j},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,\left(m-1\right)$ (3.2)

${y}^{\left(2m\right)}\left(b\right)={\beta }_{2j},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,\left(m-1\right)$ (3.3)

2) odd order boundary value problems

Consider the special (2m + 1) order BVP of the form

${y}^{\left(2m+1\right)}\left(x\right)=f\left(x,y\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}0 (3.4)

With boundary conditions

${y}^{\left(2j+1\right)}\left(0\right)={\Upsilon }_{2j+1},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,\left(m\right)$ (3.5)

${y}^{\left(2j+1\right)}\left(b\right)={\Upsilon }_{2j+1},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,\left(m\right)$ (3.6)

It is interesting to point out that $y\left(x\right)$ and $f\left(x,y\right)$ are assumed real and as many times differentiable as required for $x\in \left[0,b\right]$

4. Analysis of Higher Order Boundary Value Problems by Differential Transformation

Let the differential transform of the deflection function $y\left(x\right)$ be defined from Equation (2.1) as:

$Y\left(K\right)=\frac{1}{k!}{\left[\frac{{\text{d}}^{k}y\left(x\right)}{\text{d}{x}^{k}}\right]}_{x={x}_{0}}$ (4.1)

where x0 = 0. Also the deflection function may be expressed in terms of $Y\left(K\right)$ from Equation (2.2) as:

$y\left(x\right)={\sum }_{k=0}^{\infty }\left[\frac{{\left(x-{x}_{0}\right)}^{k}}{k!}\right]Y\left(k\right)$ (4.2)

Now, using the transformation operations which has been formed in sec.2, one can obtain by taking the differential transform of Equations (3.1) and (3.4) respectively and some simplification, the following recurrence equations as $m=0,1,2,\cdots$

$Y\left(2m+k\right)={\sum }_{k=0}^{\infty }\left[\frac{\left(2m\right)!}{\left(2m+k\right)!}\right]Y\left(.,.\right)$ (4.3)

$Y\left(2m+k+1\right)={\sum }_{k=0}^{\infty }\left[\frac{\left(2m+1\right)!}{\left(2m+k+1\right)!}\right]Y\left(.,.\right)$ (4.4)

where $Y\left(.,.\right)$ denotes the transformed function of linear and non linear function $f\left(x,y\right)$ . It may be noted that Equation (4.2) is independent of the boundary conditions. The differential transforms of the boundary conditions at x = 0 are obtained from Equations (3.2) and (3.5) in the cases even order (odd order) boundary value problems respectively with the definition 4.1 as:

$Y\left(2j\right)=\frac{1}{2j}{\alpha }_{2j},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,\left(2m-1\right)$ (4.5)

$Y\left(2j+1\right)=\frac{1}{2j+1}{\gamma }_{2j},\text{\hspace{0.17em}}\text{\hspace{0.17em}}j=0,1,2,\cdots ,2m$ (4.6)

Substituting from 4.5 and 4.6 into 4.3 and 4.4 and using 4.2, yields for $j=0,1,2,\cdots ,\left(m-1\right)$

$y\left(x\right)={\sum }_{k=0}^{\infty }\left[\frac{1}{\left(2j\right)!}{\alpha }_{2j}\right]Y\left(k\right){x}^{k}$

And for $j=0,1,2,\cdots ,m$

$y\left(x\right)={\sum }_{k=0}^{\infty }\left[\frac{1}{\left(2j+1\right)!}{\gamma }_{2j+1}\right]Y\left(k\right){x}^{k}$

Noting that ${y}^{\left(2r+1\right)}\left(0\right)={A}_{r}$ , $r=0,1,2,\cdots ,\left(m-1\right)$ , and ${y}^{\left(2r\right)}\left(0\right)={B}_{r}$ , $r=0,1,2,\cdots ,m$ , are constants that will be approximated at the end point $x=b$ .

NUMERICAL EXAMPLES

Example 1:

${y}^{8}\left(x\right)+xy\left(x\right)=-\left(48+15x+{x}^{3}\right){\text{e}}^{x},\text{\hspace{0.17em}}\text{\hspace{0.17em}}0 (1)

with boundary conditions

$\begin{array}{l}y\left(0\right)=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}y\left(1\right)=0\\ {y}^{1}\left(0\right)=1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{y}^{1}\left(1\right)=-\text{e}\\ {y}^{2}\left(0\right)=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{y}^{2}\left(1\right)=-4\text{e}\\ {y}^{3}\left(0\right)=-3,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{y}^{3}\left(1\right)=-9\text{e}\end{array}$ (2)

whose analytical solution is $y\left(x\right)=x\left(1-x\right){\text{e}}^{x}$

transforming using DTM

$\begin{array}{l}Y\left(k+8\right)\\ =\frac{k!}{\left(k+8\right)!}\left[-\frac{48}{k!}+15{\sum }_{l=0}^{k}\frac{\partial \left(l-1\right)}{\left(k-l\right)!}-{\sum }_{l=0}^{k}\frac{\partial \left(l-3\right)}{\left(k-l\right)!}-{\sum }_{l=0}^{k}\partial \left(l-1\right)U\left(k-l\right)\right]\end{array}$

With boundary conditions

$\begin{array}{l}Y\left(0\right)=0,\text{\hspace{0.17em}}Y\left(1\right)=1,\text{\hspace{0.17em}}Y\left(2\right)=0,\text{\hspace{0.17em}}Y\left(3\right)=-\frac{3}{3!},\\ Y\left(4\right)=A,\text{\hspace{0.17em}}Y\left(5\right)=B,\text{\hspace{0.17em}}Y\left(6\right)=C,\text{\hspace{0.17em}}Y\left(7\right)=D\end{array}$

At k = 0

$\begin{array}{c}Y\left(8\right)=\frac{0!}{\left(8\right)!}\left[-\frac{48}{0!}+15{\sum }_{l=0}^{0}\frac{\partial \left(0-1\right)}{\left(0\right)!}-{\sum }_{l=0}^{0}\frac{\partial \left(0-3\right)}{\left(0\right)!}-{\sum }_{l=0}^{0}\partial \left(0-1\right)U\left(0\right)\right]\\ =\frac{-1}{840}\end{array}$

k = 1

$\begin{array}{c}Y\left(9\right)=\frac{1!}{\left(9\right)!}\left[-\frac{48}{1!}+15{\sum }_{l=0}^{1}\frac{\partial \left(1-1\right)}{\left(1\right)!}-{\sum }_{l=0}^{1}\frac{\partial \left(l-3\right)}{\left(1-l\right)!}-{\sum }_{l=0}^{1}\partial \left(l-1\right)Y\left(1-l\right)\right]\\ =\frac{-1}{5760}\end{array}$

k = 2

$\begin{array}{c}Y\left(10\right)=\frac{2!}{\left(10\right)!}\left[-\frac{48}{2!}+15{\sum }_{l=0}^{2}\frac{\partial \left(1-1\right)}{\left(2-l\right)!}-{\sum }_{l=0}^{2}\frac{\partial \left(l-3\right)}{\left(2-l\right)!}-{\sum }_{l=0}^{2}\partial \left(l-1\right)Y\left(2-l\right)\right]\\ =\frac{-7}{10!}\end{array}$

k = 3

$\begin{array}{c}Y\left(11\right)=\frac{3!}{\left(11\right)!}\left[-\frac{48}{3!}+15{\sum }_{l=0}^{3}\frac{\partial \left(1-1\right)}{\left(3-l\right)!}-{\sum }_{l=0}^{3}\frac{\partial \left(l-3\right)}{\left(3-l\right)!}-{\sum }_{l=0}^{3}\partial \left(l-1\right)Y\left(3-l\right)\right]\\ =\frac{-69}{11!}\end{array}$

k = 4

$\begin{array}{c}Y\left(12\right)=\frac{4!}{\left(12\right)!}\left[-\frac{48}{4!}+15{\sum }_{l=0}^{4}\frac{\partial \left(l-1\right)}{\left(4-l\right)!}-{\sum }_{l=0}^{4}\frac{\partial \left(l-3\right)}{\left(4-l\right)!}-{\sum }_{l=0}^{4}\partial \left(l-1\right)Y\left(4-l\right)\right]\\ =\frac{-1}{5702400}\end{array}$

k = 5

$\begin{array}{c}Y\left(13\right)=\frac{5!}{\left(13\right)!}\left[-\frac{48}{5!}+15{\sum }_{l=0}^{5}\frac{\partial \left(l-1\right)}{\left(5-l\right)!}-{\sum }_{l=0}^{5}\frac{\partial \left(l-3\right)}{\left(5-l\right)!}-{\sum }_{l=0}^{5}\partial \left(l-1\right)Y\left(5-l\right)\right]\\ =\frac{-183-A}{13!}\end{array}$

k = 6

$\begin{array}{c}Y\left(14\right)=\frac{6!}{\left(14\right)!}\left[-\frac{48}{6!}+15{\sum }_{l=0}^{6}\frac{\partial \left(l-1\right)}{\left(6-l\right)!}-{\sum }_{l=0}^{6}\frac{\partial \left(l-3\right)}{\left(6-l\right)!}-{\sum }_{l=0}^{6}\partial \left(l-1\right)Y\left(6-l\right)\right]\\ =\frac{-258-B}{14!}\end{array}$

k = 7

$\begin{array}{c}Y\left(15\right)=\frac{7!}{\left(15\right)!}\left[-\frac{48}{7!}+15{\sum }_{l=0}^{7}\frac{\partial \left(l-1\right)}{\left(7-l\right)!}-{\sum }_{l=0}^{7}\frac{\partial \left(l-3\right)}{\left(7-l\right)!}-{\sum }_{l=0}^{7}\partial \left(l-1\right)Y\left(7-l\right)\right]\\ =\frac{-363-C}{15!}\end{array}$

k = 8

$\begin{array}{c}Y\left(16\right)=\frac{8!}{\left(16\right)!}\left[-\frac{48}{8!}+15{\sum }_{l=0}^{8}\frac{\partial \left(l-1\right)}{\left(8-l\right)!}-{\sum }_{l=0}^{8}\frac{\partial \left(l-3\right)}{\left(8-l\right)!}-{\sum }_{l=0}^{8}\partial \left(l-1\right)Y\left(8-l\right)\right]\\ =\frac{-504-D}{16!}\end{array}$

$y\left(x\right)={\sum }_{k=0}^{n}Y\left(k\right){x}^{k}$

$\begin{array}{c}y\left(x\right)=x-\frac{3}{3!}{x}^{3}+A{x}^{4}+B{x}^{5}+C{x}^{6}+D{x}^{7}-\frac{1}{840}{x}^{8}-\frac{1}{5760}{x}^{9}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{79}{10!}{x}^{10}-\frac{69}{11!}{x}^{11}-\frac{1}{5702400}{x}^{12}-\frac{183+A}{13!}{x}^{13}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{258+B}{14!}{x}^{14}-\frac{363+C}{15!}{x}^{15}-\frac{504+D}{16!}{x}^{16}\end{array}$

Using the boundary conditions given in (2), the required equation is (Table 1)

$\begin{array}{c}Y\left(x\right)=x-\frac{3}{3!}{x}^{3}-0.180317402{x}^{4}-0.492347647{x}^{5}+0.272873875{x}^{6}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-0.094455951{x}^{7}-\frac{1}{840}{x}^{8}-\frac{1}{5760}{x}^{9}-\frac{79}{10!}{x}^{10}-\frac{69}{11!}{x}^{11}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{1}{5702400}{x}^{12}-\frac{181.8196826}{13!}{x}^{13}-\frac{257.5076524}{14!}{x}^{14}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{363.2728476}{15!}{x}^{15}-\frac{503.905544}{16!}{x}^{16}\end{array}$

Example 2:

Consider a 7th order linear boundary value problem

Table 1. Results of Problem 1 for h = 0.1.

${U}^{7}\left(x\right)=xu\left(x\right)+{\text{e}}^{x}\left({x}^{2}-2x-6\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\le x\le 1$ (1)

Subject to the boundary conditions

$\begin{array}{l}U\left(0\right)=1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}U\left(1\right)=0\\ {U}^{1}\left(0\right)=0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}{U}^{1}\left(1\right)=-\text{e}\\ {U}^{2}\left(0\right)=-1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}{U}^{2}\left(1\right)=-2\text{e}\\ {U}^{3}\left(0\right)=-2\end{array}$ (2)

Whose analytical solution is $U\left(x\right)=\left(1-x\right){\text{e}}^{x}$

Transformed formular is

$\begin{array}{l}U\left(k+7\right)\\ =\frac{k!}{\left(k+7\right)!}\left[{\sum }_{l=0}^{k}\partial \left(l-1\right)U\left(k-l\right)+{\sum }_{l=0}^{k}\frac{\partial \left(l-2\right)}{\left(k-l\right)!}-2{\sum }_{l=0}^{k}\frac{\partial \left(l-1\right)}{\left(k-l\right)!}-\frac{6}{k!}\right]\end{array}$

Transformed boundary conditions are

$\begin{array}{l}U\left(0\right)=1,\text{\hspace{0.17em}}U\left(1\right)=0,\text{\hspace{0.17em}}U\left(2\right)=\frac{-1}{2!},U\left(3\right)=\frac{-2}{3!},\\ U\left(4\right)=P,\text{\hspace{0.17em}}U\left(5\right)=Q,\text{\hspace{0.17em}}U\left(6\right)=R\end{array}$

at k = 1

$\begin{array}{c}U\left(8\right)=\frac{1!}{\left(8\right)!}\left[{\sum }_{l=0}^{1}\partial \left(l-1\right)U\left(1-l\right)+{\sum }_{l=0}^{1}\frac{\partial \left(l-2\right)}{\left(1-l\right)!}-2{\sum }_{l=0}^{1}\frac{\partial \left(l-1\right)}{\left(1-l\right)!}-\frac{6}{1!}\right]\\ =\frac{-1}{5760}\end{array}$

k = 2

$\begin{array}{c}U\left(9\right)=\frac{2!}{\left(9\right)!}\left[{\sum }_{l=0}^{2}\partial \left(l-1\right)U\left(2-l\right)+{\sum }_{l=0}^{2}\frac{\partial \left(l-2\right)}{\left(2-l\right)!}-2{\sum }_{l=0}^{2}\frac{\partial \left(l-1\right)}{\left(2-l\right)!}-\frac{6}{2!}\right]\\ =\frac{-1}{45360}\end{array}$

k = 3

$\begin{array}{c}U\left(10\right)=\frac{3!}{\left(10\right)!}\left[{\sum }_{l=0}^{3}\partial \left(l-1\right)U\left(3-l\right)+{\sum }_{l=0}^{3}\frac{\partial \left(l-2\right)}{\left(3-l\right)!}-2{\sum }_{l=0}^{3}\frac{\partial \left(l-1\right)}{\left(3-l\right)!}-\frac{6}{3!}\right]\\ =\frac{-1}{403200}\end{array}$

k = 4

$\begin{array}{c}U\left(11\right)=\frac{4!}{\left(11\right)!}\left[{\sum }_{l=0}^{4}\partial \left(l-1\right)U\left(4-l\right)+{\sum }_{l=0}^{4}\frac{\partial \left(l-2\right)}{\left(4-l\right)!}-2{\sum }_{l=0}^{4}\frac{\partial \left(l-1\right)}{\left(4-l\right)!}-\frac{6}{4!}\right]\\ =\frac{-1}{3991680}\end{array}$

k = 5

$\begin{array}{c}U\left(12\right)=\frac{5!}{\left(12\right)!}\left[{\sum }_{l=0}^{5}\partial \left(l-1\right)U\left(5-l\right)+{\sum }_{l=0}^{5}\frac{\partial \left(l-2\right)}{\left(5-l\right)!}-2{\sum }_{l=0}^{5}\frac{\partial \left(l-1\right)}{\left(5-l\right)!}-\frac{6}{5!}\right]\\ =\frac{1+30P}{119250400}\end{array}$

k = 6

$\begin{array}{c}U\left(13\right)=\frac{6!}{\left(13\right)!}\left[{\sum }_{l=0}^{6}\partial \left(l-1\right)U\left(6-l\right)+{\sum }_{l=0}^{6}\frac{\partial \left(l-2\right)}{\left(6-l\right)!}-2{\sum }_{l=0}^{6}\frac{\partial \left(l-1\right)}{\left(6-l\right)!}-\frac{6}{6!}\right]\\ =\frac{1+60Q}{518918400}\end{array}$

k = 7

$\begin{array}{c}U\left(14\right)=\frac{7!}{\left(14\right)!}\left[{\sum }_{l=0}^{7}\partial \left(l-1\right)U\left(7-l\right)+{\sum }_{l=0}^{7}\frac{\partial \left(l-2\right)}{\left(7-l\right)!}-2{\sum }_{l=0}^{7}\frac{\partial \left(l-1\right)}{\left(7-l\right)!}-\frac{6}{7!}\right]\\ =\frac{22+7!R}{14!}\end{array}$

$\begin{array}{c}U\left(x\right)={\sum }_{k=0}^{n}U\left(k\right){x}^{k}\\ =1-\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}+P{x}^{4}+Q{x}^{5}+R{x}^{6}-\frac{1}{840}{x}^{7}-\frac{1}{5760}{x}^{8}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{1}{45360}{x}^{9}-\frac{1}{403200}{x}^{10}-\frac{1}{3991680}{x}^{11}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}+\frac{1+30P}{119750680}{x}^{12}+\frac{1+60Q}{518918400}{x}^{13}+\frac{22+7!R}{14!}{x}^{14}\end{array}$

Using the conditions given in (2), the required equation is (Table 2)

$\begin{array}{c}U\left(x\right)=1-\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}-0.125004443{x}^{4}-0.033324638{x}^{5}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-6.948728418×{10}^{-3}{x}^{6}-\frac{1}{840}{x}^{7}-\frac{1}{5760}{x}^{8}-\frac{1}{45360}{x}^{9}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{1}{403200}{x}^{10}-\frac{1}{3991680}{x}^{11}-\frac{2.75013329}{119750400}{x}^{12}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\frac{0.99947828}{518918400}{x}^{13}-\frac{13.02159123}{14!}{x}^{14}\end{array}$

Table 2. Results of Problem 2 for h = 0.1.

5. Conclusion

In this paper, the differential transformation method is used to find the solution of higher order boundary value problems (order seven and eight). The results show that the convergence and accuracy of the method for numerically analysed eight order boundary value problem are in agreement with the analytical solutions. The method is easy to apply and can be applied easily to similar problems that engineering problems. Further work can be done on higher orders.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

Cite this paper

Ogunrinde, R.B. and Ojo, O.M. (2018) Application of Differential Transformation Method to Boundary Value Problems of Order Seven and Eight. American Journal of Computational Mathematics, 8, 269-278. https://doi.org/10.4236/ajcm.2018.83022

References

1. 1. World Health Organization (2003) What Is Drug Utilization Research and Why Is It Needed: Introduction to Drug Utilization Research. Oslo Press, Oslo.

2. 2. Gama, H. (2008) Drug Utilization Studies. Arquivos de Medicina, 22, 69-74.

3. 3. Mishra, P., Dubey, A., Rana, M., Shankar, P., Subish, P., et al. (2005) Drug Utilization with Special Reference to Antimicrobials in a Sub Health Post in Western Nepal. Journal of Nepal Health Research Council, 3, 65-69.

4. 4. World Health Organization (2004) How to Investigate the Use of Medicines by Consumers. University of Amsterdam, Royal Tropical Institute, Amsterdam.

5. 5. Truter, I. (2008) A Review of Drug Utilization Studies and Methodologies. Jordan Journal of Pharmaceutical Sciences, 1, 91-104.

6. 6. Abdulrasool, B., Fahmy, S., Abu-Gharbieh, E. and Ali, H. (2010) Professional Practices and Perception towards Rational Use of Medicines According to WHO Methodology in United Arab Emirates. http://www.pharmacypractice.org/vol08/pdf/070-076.pdf

7. 7. World Health Organization (1985) The Rational Use of Drugs: Report of the Conference of Experts. In Promoting Rational Use of Medicines. WHO, Geneva. http://apps.who.int/medicinedocs/documents/s16221e/s16221e.pdf

8. 8. Bhartiy, S., Shinde, M., Nandeshwar, S. and Tiwari, S. (2008) Pattern of Prescribing Practices in the Madhya Pradesh, India. Kathmandu University Medical Journal, 6, 55-59.

9. 9. Amare, G., Alemayehu, T., Gedif, T. and Tesfahun, B. (1997) Pattern of Drug Use in Addis Ababa Community. East Africa Medical Journal, 74, 362-367.

10. 10. World Health Organization/DAP (1992) People’s Perceptions and Use of Drugs in Zimbabwe: A Socio-Cultural Research Projects. http://whqlibdoc.who.int/hq/1992/WHO_DAP_92.7.pdf

11. 11. Asefzadeh, S. and Nassiri-Asl, M. (2009) Drugs at Home in Qazvin, Iran: Community Based Participatory Research. European Journal of Scientific Research, 32, 42-46.

12. 12. Asefzadeh, S., Asefzadeh, M. and Javadi, H. (2005) Care Management: Adherence to Therapies among Patients at Bu-Alicina Clinic, Qazvin, Iran. Journal of Research in Medical Sciences, 10, 343-348.

13. 13. Kiyingi, K. and Lauwo, J. (1993) Drugs in Home: Danger and Waste. World Health Forum, 14, 381-384. http://whqlibdoc.who.int/whf/1993/vol14no4/WHF_1993_14(4)_p381-384.pdf

14. 14. Yousif, M. (2002) In-Home Drug Storage and Utilization Habits: A Sudanese Study. Eastern Mediterranean Health Journal, 8, 422-431.

15. 15. Temu-Justin, M., Makwaya, C., Mlavwasi, Y., Risha, P. and Leshabari, M. (2002) Availability and Usage of Drugs at Households Level in Tanzania: Case Study in Kinondoni District, Dar es Salaam. The East and Central African Journal of Pharmaceutical Sciences, 5, 49-54.

16. 16. Haak, H. and Radyowijati, A. (2002) Determinants of Antimicrobial Use in the Developing World Manual. Child Health Research Project Special Report Volume 4. http://www.bvsde.paho.org/bvsacd/cd65/amr_vol4.pdf

17. 17. Hussain, S., Ahmad, S., Ashfaq, K., Hameed, A., Malik, F., et al. (2011) Prevalence of Self-Medication and Health-Seeking Behavior in a Developing Country. African Journal of Pharmacy and Pharmacology, 5, 972-978.

18. 18. Okumura, J., Wakai, S. and Umenai, T. (2002) Drug Utilization and Self-Medication in Rural Communities in Vietnam. Social Science & Medicine, 54, 1875-1886.

19. 19. Kadri, R., Hegde, S., Kudva, A., Achar, A. and Shenoy, S. (2011) Self-Medication with over the Counter Ophthalmic Preparations: Is It Safe? International Journal of Biological & Medical Research, 2, 528-530.

20. 20. Durgawale, P., Phalke, D. and Phalke, V. (2006) Self-Medication Practices in Rural Maharashtra. Indian Journal of Community Medicine, 31, 34-35. http://dx.doi.org/10.4103/0970-0218.54933

21. 21. Gupta, P., Bobhate, P. and Shrivastava, S. (2011) Determinants of Self Medication Practices in an Urban Slum Community. Asian Journal of Pharmaceutical and Clinical Research, 4, 54-57.

22. 22. Suleman, S., Ketsela, A. and Mekonnen, Z. (2009) Assessment of Self-Medication Practices in Assendabo Town, Jimma Zone, Southwestern Ethiopia. Research in Social and Administrative Pharmacy, 5, 76-81. http://dx.doi.org/10.1016/j.sapharm.2008.04.002

23. 23. Baruzaig, A. and Bashrahil, K. (2008) Self-Medication: Concept, Prevalence & Risks in Mukalla City (Yemen). Andalus for studies & Researches Yemen, 2, 1-15.

24. 24. Kumar, P., Partha, P., Shankar, R., Shenoy, N. and Theodore, A. (2003) A Survey of Drug Use Patterns in Western Nepal. Singapore Medical Journal, 44, 352-356.

25. 25. Andualem, T. and Gebremariam, T. (2004) A Prospective Study on Self Medication Practices and Consumers Drug Knowledge in Addis Ababa, Ethiopia. Ethiop Journal of Health Science, 14, 1-11.

26. 26. Le Grand, A., Hagerzeil, H. and Haaijer-Ruskam, F. (1999) Intervention Research in Rational Use of Drugs: A Review. Health Policy and Planning Journal, 14, 89-92.

27. 27. Mariam, A. and Worku, S. (2003) Practice of Self-Medication in Jimma Town. Ethiop Journal of Health Science, 17, 111-116.

28. 28. WHO (2001) Sampling Methods and Sample Size. In: Omi, S., Ed., Health Research Methodology: A Guide for Training in Research Methods, Manila, 71-84.

29. 29. Gonzales, J., Orero, A. and Prieto, J. (1997) Antibiotics in Spanish Households, Medical and Socioeconomic Implications. Medicina Clínica, 109, 782-785.

30. 30. Burgerhof, J., Grigoryan, L., Ruskamp, F., Mechtler, R., Deschepper, R., Andrasevic, A., et al. (2006) Self-Medication with Antimicrobial Drugs in Europe. Emerging Infectious Diseases, 12, 452-459. http://dx.doi.org/10.3201/eid1203.050992

31. 31. Jassim, A. (2010) In-Home Drug Storage and Self Medication with Antimicrobial Drugs in Bisrah, Iraq. Oman Medical Journal, 25, 79-87. http://dx.doi.org/10.5001/omj.2010.25

32. 32. Aksakal, N., Ilhan, N., Durukan, E., Ilhan, S., &Oumlzkan, S. and Bumin, M.A. (2009) Self-Medication with Antibiotics: Questionnaire Survey among Primary Care Center Attendants. Pharmacoepidemiology and Drug Safety, 18, 1150-1157. http://dx.doi.org/10.1002/pds.1829

33. 33. Sachdeva, P. (2010) Drug Utilization Studies—Scope and Future Perspectives. International Journal on Pharmaceutical and Biological Research, 1, 11-17.

34. 34. Gedif, T. and Hahn, H. (2003) The Use of Medicinal Plants in Self-Care in Rural Central Ethiopia. Journal of Ethnopharmacology, 87, 155-161. http://dx.doi.org/10.1016/S0378-8741(03)00109-0

35. 35. Afolabi, A. (2008) Factors Influencing the Pattern of Self-Medication in an Adult Nigerian Population. Annals of African Medicine Journal, 7, 120-127. http://dx.doi.org/10.4103/1596-3519.55666

36. 36. Akram, G. and Rehman H.U. (2011) Solution of First Order Singularly Perturbed Initial Value Problem in Reproducing Kernel Hilbert Space. European Journal of Scientific Research, 53, 516-523.

37. 37. Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.

38. 38. Siddiqi, S.S. and Akram, G. (2007) Solution of Eighth-Order Boundary Value Problems Using the Nonpolynomial Spline Technique. International Journal of Computer Mathematics, 84, 347-368. https://doi.org/10.1080/00207160601177226

39. 39. Bishop, R.E.D., Cannon, S.M. and Miao S. (1989) On Coupled Bending and Torsional Vibration of Uniform Beams. Journal of Sound and Vibration, 131, 457-464. https://doi.org/10.1016/0022-460X(89)91005-5

40. 40. Liu, G.R. and Wu, T.Y. (2002) Differential Quadrature Solutions of Eighth-Order Boundary-Value Differential Equations. Journal of Computational and Applied Mathematics, 145, 223-235. https://doi.org/10.1016/S0377-0427(01)00577-5

41. 41. He, J.-H. (2007) The Variational Iteration Method for Eighth-Order Initial-Boundary Value Problems. Physica Scripta, 76, 680-682. https://doi.org/10.1088/0031-8949/76/6/016

42. 42. Akram, G. and Siddiqi, S.S. (2006) Nonic Spline Solutions of Eighth Order Boundary Value Problems. Applied Mathematics and Computation, 182, 829-845. https://doi.org/10.1016/j.amc.2006.04.046

43. 43. Li, C. and Cui, M. (2003) The Exact Solution for Solving a Class of Nonlinear Operator Equations in the Reproducing Kernel Space. Applied Mathematics and Computation, 143, 393-399. https://doi.org/10.1016/S0096-3003(02)00370-3

44. 44. Ghazala, A. and Hamood, U.R. (2013) Numerical Solution of Eight Order Boundary Value Problems in Reproducing Kernel Space. Numerical Algorithm, 62, 527-540. https://doi.org/10.1007/s11075-012-9608-4

45. 45. Golbabai, A. and Javidi, M. (2007) Application of Homotopy Perturbation Method for Solving Eighth Order Boundary Value Problems. Applied Mathematics and Computation, 191, 334-346. https://doi.org/10.1016/j.amc.2007.02.091

46. 46. Porshokouhi, M.G., Ghanbari, B., Gholami, M. and Rashidi, M. (2011) Numerical Solution of Eighth Order Boundary Value Problems with Variational Iteration Method. General Mathematics Notes, 2, 128-133.

47. 47. Boutayeb, A. and Twizell, E.H. (1993) Finite-Difference Methods for the Solution of Eighth-Order Boundary-Value Problems. International Journal of Computer Mathematics, 48, 63-75. https://doi.org/10.1080/00207169308804193

48. 48. Inc, M. and Evans, D.J. (2004) An Efficient Approach to Approximate Solutions of Eighth-Order Boundary Value Problems. International Journal of Computer Mathematics, 81, 685-692. https://doi.org/10.1080/0020716031000120809

49. 49. Wazwaz, A.M. (2000) The Numerical Solutions of Special Eighth-Order Boundary Value Problems by the Modified Decomposition Method. Neural, Parallel, and Scientific Computations, 8, 133-146.

50. 50. Mestrovic, M. (2007) The Modified Decomposition Method for Eighth-Order Boundary Value Problems. Applied Mathematics and Computation, 188, 1437-1444. https://doi.org/10.1016/j.amc.2006.11.015

51. 51. Noor, M.A. and Mohyud-Din, S.T. (2007) Variational Iteration Decomposition Method for Solving Eighth-Order Boundary Value Problems. Differential Equations and Nonlinear Mechanics, 2007, 16. https://doi.org/10.1155/2007/19529