Applied Mathematics, 2011, 2, 1270-1278
doi:10.4236/am.2011.210177 Published Online October 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
Further Results on Pair Sum Labeling of Trees
Raja Ponraj1, Jeyaraj Vijaya Xavier Parthipan2
1Department of Mat hem at i cs, Sri Paramakalyani College, Alwarkurichi, Indi a
2Department of Mat hem at i cs, St.Johns College, Palayamcottai, India
E-mail: ponrajmath@gma il.com, parthi68@rediffmail.com
Received August 4, 2011; revised September 3, 2011; accepted Septe mber 10, 2011
Abstract
Let G be a
,
p
q graph. An injective map
:1,2,,
f
VG p  is called a pair sum labeling if the
induced edge function,
 
:
e
fEG Z0 defined by
e
f
uvf ufv is one-one and
e
f
EG
is either of the form
12 2
,,,
q
kk k  or


12 12 12
,,,
qq
kk kk

  according as q is even or odd.
A graph with a pair sum labeling is called a pair sum graph. In this paper we investigate the pair sum label-
ing behavior of some trees which are derived from stars and bistars. Finally, we show that all trees of order
nine are pair sum graphs.
Keywords: Path, Star, Bistar, Tree
1. Introduction Notation 2.1: We denote the vertex and edge sets of
star 1,n
K
as follows:
The graphs in this paper are finite, undirected and simple.
and will denote the vertex set and edge
set of a graph G. The cardinality of the vertex set of a
graph G is called the order of G and is denoted by p. The
cardinality of its edge set is called the size of G and is
denoted by q. The concept of pair sum labeling has been
introduced in[1].The Pair sum labeling behavior of some
standard graphs like complete graph, cycle, path, bistar,
and some more standard graphs are investigated in [1-3].
Terms not defined here are used in the sense of Harary
[4]. All the trees of order 8 are pair sum have been
proved in [5]. Here we proved that all trees of order nine
are pair sum. Let x be any real number. Then

VG

EG
x


stands
for the largest integer less than or equal to x and
stands for the smallest inter greater than or equal to x.
1, ,:1
ni
VKuui n

and
1, 1
ni
EKuui n
 .
2. Pair Sum Labeling
Notation 2.2: We denote the vertex and edge sets of
bistar as follows:
,mn
B
,,, ,:1,1
mni i
VBuvuvim in

and
,,, :1,1
mni j
EBuvuuvvimj n
.
Theorem 2.3 [5]: All graphs of order 8 are pair sum.
Now we derive some pair sum trees which are used for
the final section.
3. Pair Sum Labeling of Star Related Graphs
Definition 2.1: Let G be a
,pq
2,,
graph. An injective
map
 
:1,
f
VG  p is called a pair sum
labeling if the induced edge function,

:
e
fEG Z
0
defined by is one-one and e
f
EG

q
is either of the
form or

12 /2
,,,
q
kk k 
,,..., q
kk kk
 
Here we prove that some trees which are obtained from
stars are pair sum.
Theorem 3.1: The trees with vertex
set and edge set given below are pair sum.
,(1 5)
i
Gi
12 (1)/2(1)/2
according as q is even
or odd. A graph with a pair sum labeling defined on it is
called a pair sum graph.
1)
11,
:1 6
ni
VG VKvi

and
R. PONRAJ ET AL.
1271
.
.
.
3
,
3
.
7



11,112 2334 4556
,,,,,
n
EGEKuvvvvv vvvv vv
Then is a pair sum graph.
1
G
2)



21,
:1 7
ni
VG VKvi
and



21,667 1223 34455
,,,,,,
n
EGEKuv vvvv vvvvvvvu
Then is a pair sum graph.
2
G
3)



31,
:1 7
ni
VG VKvi
and



31,556 6712 2334 4
,,,,,,
n
EGEKuvvvvv vv vv vv vu
Then is a pair sum graph.
3
G
4)



41, :1 4
nii
VG VKvwi
and


41,112334122
344
,,,,,
,.
n
EGEKuww wuwwwv vvv
vv vu

Then is a pair sum graph.
4
G
5)



51,
,:1 3
nii
VG VKvwi 
and



51,12311223
,,, ,,
n
EGEKuvuvuvv wvwvw
Then is a pair sum graph.
5
Proof 1): Define
G
 

1
:1,2,,fVGn 
by
 


 

123
456
1,7,5, 1,
3, 5,7
24,1 2
i
fu fvfvfv
fv fv fv
fuii n
 

 

and

(1)/2 26,1 2
ni
fuii n



 


.
Then is a pair sum tree.
1
Proof 2): Define a map
G
 

2
:1,2,,fVGn 8
by
and

(/2) 28,1 22
nii
fuiin





.
Then is a pair sum graph.
2
Proof 3): Define a map
G

3
:1,2,,fVGn8
by


 
 

123
4567
1
(/2)
3,6, 1,
4, 2, 3,4,
1,7 ,
12,10,12
ni
fv fvfv
fvfvfv fv
fu fui
in fuiin


  
 

 .


Then is a pair sum graph.
3
Proof 4): Define a map
G

4
:1,2,,fVGn 9
by

 


12 34
1234
1, 3,2, 1,4,
5,6, 7,4.
fufv fvfv fv
fwfwfw fw

  
For the other vertices we define,

(1)/2
52,1 2
72,1 2.
i
ni
fuiin
fuii n



 

 


Obviously f is a pair sum labeling.
Proof 5): Define

5
:1,2,,fVGn7
by


 



123
123
(1)
1, 2,3,4,
3,5, 7,
24,1 2
22,12.
i
ni
fufvfvfv
fw fwfw
fuii n
fuiin



 
 
 


 

Obviously f is a pair sum labeling.
Illustration 1: A pair sum labeling of the tree
with
1
G
10n
is
75 3 1 –5 –7
–1
12 84 –4 –12 –8
–6
8
10
–14
8
10
12
14
16
–7 –9 –11
–13
–15
7
9
15
13 11
–12
 


 
 

123
4567
1
1
3,6, 1,
4, 1,3,4,
2, 7,
42,1 2
i
fv fvfv
fvfv fvfv
fu fu
fuiin
  
 

 


Copyright © 2011 SciRes. AM
1272 R. PONRAJ ET AL.
Illustration 2: A pair sum labeling of the tree
with is
3
G
9n
–6 –3 –1 –4 1 2 3 4
–9 –7 –5 –3 3 5 7
8
9
10 11 12 –11
–12
–13
–14
9
10
11 12 13 –10
–11
–12
–13
Illustration 3: A pair sum labeling of the tree
with is
5
G
11n
10
8
6
12
14
16
–4
–6
–8
–10
–12
4
–3
7
–5–2 3
2
–3
–1
2
1
5
7
9
11
13
15
–5
–7
–9
–11 –13
3
–1
4. Bistar Related Graphs
In this section we show that some trees which are ob-
tained from bistar are pair sum.
Theorem 4.1: Let G be the tree with


,:1 6
mn i
VG VBwi
and



,112234455
,,,,,
mn
EGEBvwwwwwvw wwww 6
.
8
Then G is a pair sum graph.
Proof: Define
 
:1,2,,fVGmn 
and
 

 
 
1234
56
4, 5, 6,2,
7,4, 2,1.
fw fwfwfw
fwfwfu fv

 
Case 1):
mn
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

8,1
ni
fun iim n
 


2
and


213, 12
mn i
fun iim n



 


Case 3): mn
Assign the label to
,1
ii
uvim as in case 1). De-
fine

11,12
mi
fvm iinm
 




210, 12.
mn i
fvmiinm



 


Then G is a pair sum graph.
Theorem 4.2: If G is the tree with

,:13
mn i
VG VBwi

and
,112233
,,,
mn
EGEBuww wwwwvuv .
Then G is a pair sum tree.
Proof: Define a function

:1,2,,fVGmn 5
by
 

12
3
1, 3,4,1,
2.
fufv fwfw
fw
 
Case 1): mn
.
5,1
i
f
uiin

and
3,1
i.
f
viin

Case 2): . mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

5,1
ni
funiim n
 


2


27,12
mn i
fun iim n






.
Then G is a pair sum graph



11
3,9, 11,
10, 1.
i
i
fufuii n
fvii n
 
  Illustration 4: A pair sum labeling of the tree in theo-
rem 4.2 with 10m
, 6n
is given below:
Copyright © 2011 SciRes. AM
R. PONRAJ ET AL.
Copyright © 2011 SciRes. AM
1273
–4 –3 1 3 2 5
3
4 5
6
7
8
9
7 8
9
10
11
12
–9
–8
–1 –5
–7
–6
15
14
–13
–12
–11
–10 –10
–9 –8
–7
14
13
–14
–13
–12
–11
Theorem 4.3: Let G be the tree with and edge set


,:1 4
mn i
VG VBwi
,11223445
,, ,, ,
mn
EGEBuwwv vww wvwwwuv .
Then G is a pair sum tree. and



,1122334
,,,,
mn
EGEBuwwwwvvwwwuv Proof: Define
.

:1,2,,fVGmn 7
Then G is a pair sum graph.
by
Proof: Define


:()1,2, ,6fVG mn 
 



12
34 5
1, 1,4,2,
3,3, 5.
fufv fwfw
fw fwfw
 

by Case 1): mn
 



12
34
1, 2,4,1,
3, 4.
fufv fwfw
fw fw
 

5,1
i
f
uiin

and
Case 1): . mn
5,1
i
f
viin



11
6,6, 11
i
f
ufu iin
  Case 2): mn
and Label the vertices and as in case 1) for
i
ui
v
1in

5,1.
i
f
vii n
.
Define

5,1
ni
funiim n
 


2
Case 2): .
mn
Assign the label to
,1
ii
uvin
as in case 1). De-
fine and


26,1 2
mn i
fun iim n


 

.


5,1
ni
funiimn
 

2
Case 3): mn
and
Assign the label to
,1
ii
uvin as in case 1). De-
fine



28,1 2
mn i
fun iim n


 

.

5,1
mi
fvm iinm



2
Case 3): .
mn
Assign the label to
,1
ii
uvin
as in case 1). De-
fine and


27,1 2
mn i
fvmiin m


 

.


8,1
mi
fvm iin m


2
and Then G is a pair sum graph.
Theorem 4.5: Let G be the tree with


2
()5,1
mn i
fvm iinm



 


2.

,:15
mn i
VG VBwi

Then G is a pair sum graph.
Theorem 4.4: The tree G with vertex set and


,:15
mn i
VG Bwi
,12233445
,,,,,.
mn
EGEBww wuuwwvvw wwuv
R. PONRAJ ET AL.
1274
7
.
Then G is a pair sum tree.
Proof: Define a function


:1,2,,fVGmn 
by
 



12
34 5
4, 2,6,1,
1, 3, 4.
fufv fwfw
fw fwfw
 

Case 1): mn

6,1
i
f
uii n
.
and

8,1
i
f
vii n
.
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvim


8,1
mi
fvmiin m


2
and



212, 12.
nm i
fvmiin m


 

Then G is a pair sum graph.
Illustration 5: A pair sum labeling of the tree in theo-
rem 4.5 with , is given below:
6m11n
–6 –7 –1 –5 –4 –3 1 3 2 5 3 7 4
9
10 11 12
13
14
15
16
17
–20
–21
11
12 13 14
15
16
17
18
19
–18 –19
–10 –9 –8 –7
–13
12
–11
–17
–16
–15
–14
–13
–12
–11
Theorem 4.6: Let G be the tree with


,:1 4
mn i
VG VBwi
and



,1 122334
,, ,,
mn
EGEBuwwvvwww wwuv .
6
.
Then G is a pair sum tree.
Proof: Define a function
 

:1,2,,fVGmn 
by
 


12
34
1, 1,4,2,
3, 4.
fufv fwfw
fw fw
 

Case 1): mn
6,1
i
f
uiin

and
6,1
i.
f
viin

Case 2): .mn
Assign the label to
,1
ii
uvim as in case 1). De-
fine

7,1
mi
fvmiin m



2
and


26,1 2
mn i
fvm iimn



 


.
Case 3): . mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

5,1
ni
funiim n
 


2
and


28,1 2
mn i
fun iim n



 


.
Then G is a pair sum graph.
Theorem 4.7: Let G be the tree with

,:1 4
mn i
VG VBwi

and
,112233
,,,
mn
EGEBvwww wwww 4
.
Then G is a pair sum tree.
Proof: Define a function

:1,2,,fVGmn 6
by



12
34
1, 2,3,1,
2, 3.
fu fvfwfw
fw fw

 
.
Case 1): mn
6,1
i
f
uiim

and
13,1 1.
i
fvii m

Case 2): .mn
Assign the label to
,1
ii
uvim as in case 1). De-
fine

2,1
mi
fvmiin m


2
and


27,1 2
mn i
fumiin m


 

.
Case 3): .
mn
Copyright © 2011 SciRes. AM
R. PONRAJ ET AL.
1275
Assign the label to
,1
ii
uvin
as in case 1). De-
fine


6,1
ni
funiim n



2
and



25,1 2
mn i
fun iim n



 


.
Then G is a pair sum graph.
Theorem 4.8: The tree G with


,:15
mn i
VG VBwi
and



,1122344
,,,,
mn
EGEBvwww wwvw ww 5
.
7
Then G is a pair sum graph.
Proof: Define a map
 
:1,2,,fVGmn 
by
 



12
345
1, 2,3,4,
1,5, 4.
fu fvfwfw
fw fwfw
 

Case 1): .mn

7,1
i
f
uii m
and

4,1
i.
f
vii m
.
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvim


4,1
mi
fvmiin m



2
and



28,12
mn i
fum iin m



 


.
.
Case 3): mn
Assign the label to
,1
ii
uvin
as in case 1). De-
fine


7,1
ni
fun iim n



2
and



25,1 2
mn i
fun iim n


 

.
Then G is a pair sum graph.
Theorem 4.9: The tree G with


,:15
mn i
VG VBwi
and



,122 33445
,,, ,
mn
EGEBww wuvwww ww .
Then G is a pair sum graph.
Proof: Define a map

:1,2,,fVGmn 7
by
 



12
345
4, 1,6,1,
2, 3, 4.
fufv fwfw
fw fw fw
 

Case 1): .mn

11
1
5,6,11,
8
i
fufuii m
fv

and
19,1 1
i
fuii m
.

Case 2): .mn
Assign the label to
,1
ii
uvim as in case 1). De-
fine

8,1
mi
fvmiin m



2
and


210, 12.
mn i
fumiin m



 


Case 3): .mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

5,1
ni
funiim n
 


2
and


213, 12.
mn i
fun iim n



 


Then G is a pair sum graph.
Theorem 4.10: The tree G with

,:16
mn i
VG VBwi

and
,12233455
,,, ,,
mn
EGEBwwwuvwww vw ww 6
.
Then G is a pair sum graph.
Proof: Define a map

:1,2,,fVG mn 8
by
 


 
12
3456
4, 1,6,1,
2, 3,3, 5.
fufv fwfw
fwfw fwfw
 

Case 1): .mn

4,1 ,6
ii
fuii mfv

and
Copyright © 2011 SciRes. AM
R. PONRAJ ET AL.
Copyright © 2011 SciRes. AM
1276
.

17,1 1.
i
fvii m
 
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvim


6,1
mi
fvmiin m
 

2
and



28,12
mn i
fum iin m


 

.
.
Assign the label to as in case 1). De-
fine
,1
ii
uvin

11, 12
ni
funiimn



and


24,1 2
mn i
funiim n



 


.
Then G is a pair sum graph.
Illustration 6: A pair sum labeling of the tree in theo-
rem 4.10 with 10m
, 5n
is given below
Case 3): mn
–6 –7 –1
–2
–3
2
5
3
2
5
3
11
10
9
8
10
11
12
–5 13 –4 –3 1
6
7
9
–9
–8
–7
–6
–5
–13
–12
–11 –10
–9
–15
–14
15
14 –11
–10
19
18
17
Theorem 4.11: The tree G with and


25,12
mn i
fum iin m



 




,:1 4
mn i
VG VBwi .



,122 3344
,,, ,
mn
E GEBwwwuuwwwwvuv .
6
Case 3): .
mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin
Then G is a pair sum graph.
Proof: Define a map

4,1
ni
funiim n


2
 

:1,2,,fVGmn 
and
by


26,1 2
mn i
funiim n



 


 



12
34
1,1,3,2,
4, 2.
fu fvfwfw
fw fw
 
 
.
Then G is a pair sum graph.
Theorem 4.12: The tree G with
Case 1): .mn

,:13
mn i
VG VBwi


4,1
i
f
uii m
.
and
,112232
,,,
mn
EGEBuwwwww wvuv .

5,1
i
f
vii m
.
Then G is a pair sum graph.
Case 2): mnProof: Define a map
Assign the label to as in case 1). De-
fine
,1
ii
uvim

:1,2,,fVGmn 5


6,1
mi
fvmiin m
 


2 by
R. PONRAJ ET AL.
1277
 


12
3
1, 1,2,3,
5.
fufv fwfw
fw
 
Case 1): .mn

3,1
i
f
uii m
and

3,1.
i
f
vii m
.
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvim


3,1
mi
fvmiinm



2
and



25,12
mn i
fum iin m



 


.
.
Case 3): mn
Assign the label to
,1
ii
uvin
as in case 1). De-
fine


3,1
ni
fun iim n



2
and



25,1 2
mn i
fun iim n



 


.
Then G is a pair sum graph.
Theorem 4.13: The tree G with


,:13
mn i
VG VBwi
and




,112231
,,,
mn
EGEBuwww wwwvuv .
5
Then G is a pair sum graph.
Proof: Define a map


:1,2,,fVGmn 
by
 


12
3
1, 3,2,3,
2.
fufvfwfw
fw
 

Case 1): .mn

5,1 ,
i
f
uii m

3,1.
i
f
vii m
.
Case 2): mn
Assign the label to as in case 1). De-
fine
,1
ii
uvim

3,1
mi
fvmiin m



2
and


29,12
mn i
fumiin m



 


.
Case 3): . mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

5,1
ni
funiim n
 


2
and


27,12
mn i
fun iim n






.
Then G is a pair sum graph.
Theorem 4.14: The tree G with

,:13
mn i
VG VBwi

and
,212232
,,,
mn
EGEBuwww wwwvuv .
Then G is a pair sum graph.
Proof: Define a map

:1,2,,fVGmn 5
by
 

12
3
1, 3,5,2,
1.
fu fv fwfw
fw
 
Case 1): .mn
42,1
i
f
uiim

and
2,1 .
i
f
viim

Case 2): . mn
Assign the label to as in case 1). De-
fine
,1
ii
uvin

32 ,12
ni
funiim n



and


252 ,12.
mn i
fun iim n



 


Then G is a pair sum graph.
Illustration 7: A pair sum labeling of the tree in theo-
rem 4.14 with 9m
, 6n
is given below:
Copyright © 2011 SciRes. AM
R. PONRAJ ET AL.
Copyright © 2011 SciRes. AM
1278
–5
–3
2
3
1
–1
1 –1
–2
–4
–6
–8
–10
–12
–11
–13
–15
–9
–7
–5
–3
12
10 8 6
11 9 7
5
13
15
–17
–18
17
18
–17
–16
16
14
5. Trees of Order 9
Here we prove that all trees of order 9 are pair sum.
Theorem 5.1: The trees given below are pair sum.
1)
2)
3)
4)
5)
6)
7)
8)
9)
,
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
Proof: Graphs in case 1) to case 5) are pair sum by
theorem 3.1. and case 6) to case 19) graphs are pair sum
by theorem 4.1 to 4.14.
Remark 5.2: The remaining trees of order 9 are pair
sum by theorems in [5].
Theorem 5.3: All trees of order 9 are pair sum.
Proof: Follow from theorem 5.1 and Remark 5.2.
Theorem 5.4: All trees of order 9 are pair sum.
Proof: Follow from theorems 2.3, 5.3.
6. Acknowledgements
The authors thank the referees for their comments and
valuable suggestions.
7. References
[1] R. Ponraj and J. V. X. Parthipan, “Pair Sum Labeling of
Graphs,” The Journal of Indian Academy of Mathematics,
Vol. 32, No. 2, 2010, pp. 587-595.
[2] R. Ponraj, J. V. X. Parthipan and R. Kala, “Some Results
on Pair Sum Labeling,” International Journal of Mathe-
matical Combinatorics, Vol. 4, 2010, pp. 53-61.
[3] R. Ponraj, J. V. X. Parthipan and R. Kala, “A Note on
Pair Sum Graphs,” Journal of Scientific Research, Vol. 3,
No. 2, 2011, pp. 321-329. doi:10.3329/jsr.v3i2.6290
[4] F. Harary, “Graph Theory,” Narosa Publishing House,
New Delhi, 1998.
[5] R. Ponraj, J. V. X. Parthipan and R. Kala, “Pair Sum
Labeling of Some Trees,” The Journal of Indian Academy
of Mathematics (Communicated), in Press.