Applied Mathematics, 2011, 2, 1191-1195
doi:10.4236/am.2011.210165 Published Online October 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
No Degeneracy of the Ground State f or the Impac t
Parameter Model
Héctor C. Merino1, Juan Héctor Arredondo2
1Universida d A ut ó no ma de Guerrero , Unidad Académica de Matemáticas,
Chilpancingo, México
2Departamento de Matemática s, Universidad Autónoma Metropo litana-Iztapalapa,
Distrito Federal, México
E-mail: mech@xanum.uam.mx, iva@xanum.uam.mx
Received May 25, 201 1; revised July 6, 2011; accepted July 13, 2011
Abstract
A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle
and two heavy ones is considered. Existence and non degeneracy of the ground state is shown.
Keywords: Impact Parameter Model, Non Degeneracy of the Ground State
1. Introduction
In [1,2], the impact parameter model for the scattering of
two heavy particles and a light one is stud ied, where it is
assumed that the heavy particles are infinitely massive
and that their motion along a classical trajectory is not
affected by the light particle. Also, rigorous proof from
first principles of the validity of Massey’s criterion is
given [1,3].
The above mentioned results were proved for a simple
Hamiltonian, by means of an adiabatic argumentation.
Now we study a more complicated one than in [1], where
a precise knowledge of the discrete spectrum of the cor-
responding Hamiltonian was needed.
A physical ground state is a state of minimal energy,
and therefore it has a relevant role in quantum theories.
See for instance [4-17].
In this work we prove non degeneracy of the ground
state for the Hamiltonian

111221,2 2,
1,
2
HtV VVV
 
  (1)
defined as an operator in the Hilbert space
2n
L

2n
of
all complex valued Lebesgue measurable square inte-
grable functions on , with domain , the
Sobolev space of order two [18]. is the Laplace opera-
tor [11].
n
H
22
22
1
,
n
x
x

 

with derivatives in the distribution sense, and, 1
, 2
, 1
,
2
are positive constants. Also, for , we will
take the potentials of ra nk one: 1, 2k
k
V
,,
kk
Vgg

k

2,
n
L
 (2)
with 12
,
g
g fixed elements in
2n
L. Here (,)
de-
notes the scalar product in
2n
L, antilinear on the
factor on the left. Moreover,
,,
,Vgg
,




,

,:,
g
xgx t
 
 (3)
t
n
being a continuous function on with values in
satisfying
00 n
 and
||
lim .
tt
 
We denote by the Fourier transform [19], as an uni-
tary operator in
2n
L:

||
ˆlimed ,
ipx
KxK
gg

px
x

2,
n
gL
where the limit is taken in the -norm.
2
L
2. Main Theorem
From Weyl’s theorem [16], one knows that for each
t
,
H
t is a self-adjoint operator with discrete
spectrum in
,0 . The eigenvector corresponding to
the infimum of the spectrum of

H
t is called the
1192 H. C. MERINO ET AL.
ground state for

H
t
i
. The following theorem was
proved in [20].
Theorem 2.1. For let and 1
1, 2,
2n
i
gL
ˆ
g
nonnegative functions obeying More-
over, we suppose the constants
2
1
ˆ
||gL
p
,
ii
.

in Equation (1)
satisfy
11212 2
0.
 

0(2)E
 
such that 0 and 21
1
EE
0.E
Here
2
10 and 
1
,(EE2),E
E,
are the ground state ei-
genvalues asso ciated to

11

0
E
12 2
21 12
11
,,
22
11
,,
22
VV
VV


 

respectively. Then the following statements are valid:
1) The eigenvalue , corresponding to the ground
state for the operator
  
121 122
1
2
0,
H
VV
 

,E

and the eigenvalue corresponding to the ground
state for the operator
11 12
1,
2
H
VV


are strictly negative and the inequality 0
EE
 holds.
2) The eigenvale
,Et corresponding to the grou nd
state for
H
t for all lies in the interval t
0
3) In the interval
,EE
.
1 there are no eigenval-
ues of ,EE
H
t for every . t
We mention that for a given function
2
0,
n
gL
0

one can find a sufficiently large positive constant
such that the operator

1,
2
g
g
 (4)
has a (unique) negative eigenvalue E
for 0.
In
fact, is a negative eigenvalue iff [1]
E
2
1/2
2
ˆ
1,
2
g
pE



(4)
where we denote 2
2:.pp Note also that for a given
g the right hand side of (5) is a monotone decreasing
function of E. Therefore, given functions i
g
in
2n
L
one can find constants
,1,2i
ii

large enough for
the hypotheses of the theorem to hold.
We will prove in this manuscript that under the hy-
potheses of theorem 2.1, for the ground state of
t
H
t is not degenerate.
Let
Et be the ground state eigenvalue of the time
dependent operator given by Equation (1). We define
 
2
:2
p
pEt and
22
1
ˆˆ
11
;
ii ii
ii
gg
ad

 2
for 1, 2.i
(6)
Moreover,



1
121 1,
1
11 112
1
122 1,
1
21 22, 1
1
12 222,
ˆˆ
,,
ˆˆ
,,
ˆˆ
,
ˆˆ
,,
ˆˆ
,
agg
bgg
bgg
bgg
dgg

 
 
 
 
,
(7)
Lemma 2.1. Let
Et be the ground state eigen-
value of the time dependent operator
H
t given by
Equation (1). Then, the matrix equation
4
11 121121
1222 1211
11 121112
21 111222
0,
:,
T
M
aabb
aabb
AB
Mbbdd
BD
bbdd











x
y
(8)
has a nontrivial solution. Furthermore

11 12
12 22
det det0
dd
Ddd







.t
Proof: Let
t
the eigenvector for
H
t with re-
spective eigenvalue
Et, then the Fourier transform
of
t
is given by
 





1,
1
11 21,
2,
2
12 22,
ˆ
ˆ
ˆ,,
()
ˆ
ˆ
,,,
g
g
tg g
g
g
gg
 
 




pp
pp
(9)
where
 
2
:. The Plancherel theorem im-
2
pEtp
plies that

2
ˆˆ
,,, n
uvuvuv L
1
ˆ.
Taking inner
roducts in (9) with p
g
and 1,
ˆ
g
for we
get
1, 2,i
Copyright © 2011 SciRes. AM
H. C. MERINO ET AL.
Copyright © 2011 SciRes. AM
1193
















2
11 1
1
111 21,11,121222,12,
2
1,
11
1,111,121,121, 222,1, 2,
2112
ˆ
ˆˆ ˆˆˆ
ˆˆ ˆˆˆˆˆˆˆˆˆ
,,,,,,,, ,
ˆ
ˆˆˆˆˆ
ˆˆˆˆˆˆˆˆˆ ˆˆ
,,,,, ,,
ˆˆ
ˆˆˆ
,,,
g
gg ggggggggg
g
ggggggggg gg
ggg
 
 
 
 
 
 


 





1
,










2
11 1
2
121, 21,1222, 22,
2
2,
11 1
2,112, 121,2, 1,122,222,
ˆ
ˆˆˆ
ˆˆ ˆˆˆˆˆˆ
,,,,, ,
ˆ
ˆˆ ˆˆˆ
ˆˆˆˆˆˆˆˆˆˆˆ
,,,,,,,,,
g
gg gggggg
g
ggggggggggg
 

 
 

 

 .
(10)
This system of equations is represented in matrix form
precisely by Equation (8), wh ere

22
ˆˆ
11
gg



22
1/2 1/2
22
12
2
2,
22
22
ˆ
ˆ,
2
E
Rt pp
EE
g
gpE

 


 

 


 









11
1
221,
12
1
222,
ˆ
ˆ,
:;
ˆ
ˆ,
ˆ
ˆ,
:ˆ
ˆ,
g
x
xg
g
y
yg














x
y
(11)
From Theorem 2.1 we deduce the existence of a non-
trivial solution to Equation (8).
Now we fix For every t let us consider
the function, 0.E and observe that for 0(2),EE

24 2
2
2,
12 2212 2
2
1/21/2 21/2
22 2
12 1212 12
2
122
1/2
2
1212
ˆ
ˆˆ ˆ
11
ˆ,
2
22 2
ˆ
10.
2
E
g
gg g
Rt gp
pp p
E
EE
g
pE
 


 



 

 

 
 

 












E
(12)
The last inequality being true because of the remark
following Equation (5). Also, we have used the Schwarz
inequality and the Fourier transform property
  
12112
1
022
H
VV
 
 
is not degenerate.



2, 2
ˆˆ
.
it
geg

p
pp When
EEt is the ei- Proof: Lemma (2.1) assures that exists. Equa-
tion (8) implies,
1
D
genvalue for

,
H
t

Et
then the determinant of matrix D in
Equation (8) satisfies, Theorem 2.1
states that
 
det .DREt
0,E E
 and
10
2.EEE

0.D
Then, (12) gives
det
1,DB
yx
1.
T
ABDB
x0 (13)
We take so that,
1
:,
T
CABDB

The main result will be proved by showing that the
dimension of the eigenspace associated to the ground
sate remains constant over time.
11 12
12 22
,
cc
Ccc



where
Lema 2.2. The ground state for the operator
1194 H. C. MERINO ET AL.



22
11221121 1221 11
11 11
12
2
1112221121 1111 1212 21 12
12
22
11111112122122
22 22
2,
det
,
det
2.
det
bdbbd bd
ca D
c
bbdbbdbdbbd
aD
bdbbd bd
ca D





(14)
From Theorem 2.1, we know that there exists a non-
trivial solution to system (8). Thus Accord-
ingly, det 0.
C
11 12
11 12
,
cc
Ckc kc



(15)
for some constant Moreover, for

.kkt0t
the
matrix is not null. In fact, for this value of t,
the following terms simplify

CCt
2
1/2
2
1201
2
1/2
2
1202
1
2
21 1211102
ˆ,
2
ˆ,
2
ˆˆ
,.
2
p
aEg
p
dEg
p
bbbgE g

 



 





 




It follows that,

2
2
11112212 111
12 121/2
2
0
2
2
212 2
121/2
2
12
00
22
1/2 1
22
021 02
2ˆ
det
2
ˆˆ
ˆ,2
22
det
ˆˆ ˆ
2,
22
det
0,
bd ddbg
ca DpE
gg
gpp
EE
D
pp
EggEg
D




 















 


 

 
(16)
where we use equation (5), the hypothesis
01
2EE
and statement (3) of theorem 2.1. Therefore,
2
1/2
212
02 12
ˆ.
22
pEg




Equations (11)-(16) imply,
 


11122222 12
21 121122
12 1
12
1122 1112 12
11 1221 11
22, 1
12
ˆ
ˆ,det det
ˆ
ˆ,det det
cbd bd
bd bd
g
x
DcD
cbd bd
bd bd
g
x
DcD










(17)
Substitution of these equalities in Equation (9) gives,

1,
1
11
22
00
2,
2
23
22
00
ˆ
ˆ
ˆ0
22
ˆ
ˆ.
22
g
g
xk
pp
EE
g
g
kk
pp
EE




(18)
Here,


11
112
12211211 1222121122112212
212
1211 1211221112 21 11111212
312
det
.
det
c
kc
cbd cbdcbdcbd
kcD
cbd cbdcbd cbd
kcD



(19)
This determines the vector up to a multiplica-
tive constant, and from the Plancherel theorem, also the
eigenspace associated to the ground state for

ˆ0
0,H
proving the statement of the lemma.
Theorem 2.2. Let
H
t be defined by Equation (1)
and suppose the hypotheses of theorem 2.1 hold true.
Moreover, we take the curve so that
:n

,tavt
,M
,
n
t for some positive constant M
and fixed vectors Then the dimension of the
spectral projection onto the interval
.av
0,EE


, asso-
ciated with the selfadjoint operator
H
t, is equal to
one for each .t
Proof: The resolvent i of a self-adjoint opera-
tor A at

RA
i
is defined by with I denoting
the identity operator on

1
A
iI
2n
L.We take
22
,
H
Ht
,
11
H
Ht for two distinct values and and
calculate the difference 1
t2
t

21ii
RH
.RH







12
12
21 221
221,1, 1
222,2,1
iii i
ii
ii
RHRHRH H HRH
RH VVRH
RH VVRH


 


1
(20)
Copyright © 2011 SciRes. AM
H. C. MERINO ET AL.
Copyright © 2011 SciRes. AM
1195
[6] K. Chadan and P. C. Sabatier. “Inverse Problems in
Quantum Scattering Theory,” Springer-Verlag, New
York, 1989.
Here 1
1,
V
is given as in Equation (3) with
 
,ii
g
g
xxt replaced with
 
1
1,11.
g
gt
xx Also 21
1, 2,
,,VV
2
2,
V and
[7] T. Cubel, B. K. Teo, V. S. Malinoysky, J. R. Guest, A.
Reinhard, B. Knuffman, P. R. Berman and G. Raithel,
“Coherent Population Transfer of Ground-State Atoms
into Rydberg States,” Physical Review A, Vol. 72, 2005,
pp. 023405 (1-4).
being defined similarly. It follows from Equation (1) and
standard arguments that
 
212
,
ii
RHRHtt
1
where is a constant uniform in
12
,[,tt MM]
depending on
g
p and ,
g
This implies
that is uniformly continuous on with
respect to the norm topology. Let denote the
spectral projection of a self-adjoint operator B corre-
sponding to the Borel set By functional calcu-
lus, we get
1, 2.
S
PB

t
1
i
RH
.S
[8] H. L. Cycon, R. G. Froese, W. Kirsh and B. Simon.
“Schrödinger Operators with Application to Quantum
Mechanics and Global Geometry,” Springer-Verlag, New
York, 1987.
[9] E. Farhi, J. Goldstone, S. Gutmann and M. Sipser,
“Quantum Computation by Adiabatic Evolution,” 2000.
arXiv:quant-ph/0001106v1
[10] P. D. Hislop and I. M. Sigal, “Introduction to Spectral
Theory with Applications to Schrödinger Operators,”
Springer-Verlag, New York, 1996.






00
21
,,EE EE
PHtPHt
 
as
21
,tt
[11] T. Kato, “Perturbation Theory for Linear Operators,”
Springer-Verlag, Berlin and New York, 1984.
in the operator norm. Therefore, by standard arguments






00
2
,,
dimdim ,
EE EE
PHt PHt
 
[12] J. O. Lee and J. Yin, “A Lower Bound on the Ground
State Energy of Dilute Bose Gas,” Journal of Mathe-
matical Physics, Vol. 51, No. 5, 2010, pp. 053302 (1-31).
For 2 close enough to . It follows from lemma
2.2 that
t1
t[13] E. L. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason,
“The Ground State of the Bose Gas,” 2003.
arXiv:math-ph/0204027v2



0,
dim 1
EE
PHt


.t
[14] H. E. Puthoff, “Ground State of Hydrogen as a Zero-
Point-Fluctuation-Determined State,” Physical Review D,
Vol. 35, No. 10, 1987, pp. 3266-3269.
doi:10.1103/PhysRevD.35.3266
Remark: We mention that the hypothesis for the curve
t
can be relaxed to the condition that
t
is as-
ymptotic to a straight line.
[15] M. Reed and B. Simon, “Methods of Modern Mathe-
matical Physics, Vol. IV,” Academic Press, New York,
1975.
3. References
[1] J. H. Arredondo, “Asymptotic Transition Probabilities,”
Journal of Mathematical Physics, Vol. 30, No. 10, 1989,
pp. 2291-2296. doi:10.1063/1.528558
[16] W. Thirring, “A Course in Mathematical Physics. Vol.
III,” Springer-Verlag, New York, 1981.
[17] I. Wilson-Rae, N. Nooshi, W. Zwerger and T. J. Kippen-
berg, “Theory of Ground State Cooling of a Mechanical
Oscillator Using Dynamical Backaction,” Physical Re-
view Letters, Vol. 99, No. 9, 2007, Article ID: 093901
(1-4).
[2] J. H. Arredondo, “Adiabatic Approximation on the Im-
pact-Parameter Model,” Few-Body Systems, Vol. 10, No.
2, 1991, pp. 59-72. doi:10.1007/BF01352402
[3] H. S. W. Massey, “Collision between Atoms and Mole-
cules at Ordinary Temperatures,” Reports on Progress in
Physics, Vol. 12, No. 1, 1949, p. 248.
doi:10.1088/0034-4885/12/1/311
[18] P. D. Lax, “Functional Analysis,” John Wiley & Sons
Inc., New York, 2002.
[19] M. Reed and B. Simon, “Methods of Modern Mathe-
matical Physics, Vol. II,” Academic Press, New York,
1975.
[4] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S.
Lloyd and O. Regev, “Adiabatic Quantum Computation
Is Equivalent to Standard Quantum Computation,” 45th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS'04), Rome, 17-19 October 2004.
[20] J. H. Arredondo and P. Seibert, “Characterization of the
Fundamental State Eigenvalue for Some Time Dependent
Hamiltonians,” Aportaciones Matemáticas. Serie Comu-
nicaciones, Vol. 29, No. 3, 2001, pp. 3-10.
[5] F. Hiroshima, “Topics in the Theory of Schrödinger Op-
erators,” World Scientific Publishing Co. Pte. Ltd., Sin-
gapore, 2004.