L. D. NIEM ET AL.275
1) Can one find the precise scaling function
such
that ? Is the set
0< <B
0,11\ B0,
immesaurable, that is, either null or non-
-finite for
every translation invariant Borel measure on ? See
[10], where it is shown that the set
2
R
<1/20<
\
p
R is
immeasurable.
2) What is the relationship between
x and
2
x?
3) How large is the set of points
such that
=?
fx Can we characterize this set of fixed points?
4. References
[1] L. Barreira, B. Saussol and J. Schmeling, “Distribution of
Frequencies of Digits via Multifractal Analysis,” Journal
of Number Theory, Vol. 97, No. 2, 2002, pp. 410-438.
doi:10.1016/S0022-314X(02)00003-3
[2] A. Besicovitch, “On the Sum of Digits of Real Numbers
Represented in the Dyadic System,” Mathematische An-
nalen, Vol. 110, No. 1, 1934, pp. 321-330.
doi:10.1007/BF01448030
[3] P. Billingsley, “Hausdorff Dimension in Probability The-
ory II,” Illinois Journal of Mathematics, Vol. 5, No. 2,
1961, pp. 291-298.
[4] H. Cajar, “Billingsley Dimension in Probability Spaces,”
Springer-Verlag, Berlin-New York, 1981.
[5] C. S. Dai and S. J. Taylor, “Defining Fractals in a Prob-
ability Space,” Illinois Journal of Mathematics, Vol. 38,
No. 3 1994, pp. 480-500.
[6] M. Das, “Billingsley’s Packing Dimension,” Proceedings
of the American Mathematical Society, Vol. 136, No. 1,
2008, pp. 273-278. doi:10.1090/S0002-9939-07-09069-7
[7] M. Das, “Hausdorff Measures, Dimensions and Mutual
Singularity,” Transactions of the American Mathematical
Society, Vol. 357, No. 11, 2005, pp. 4249-4268.
doi:10.1090/S0002-9947-05-04031-6
[8] H. G. Eggleston, “The Fractional Dimension of a Set
Defined by Decimal Properties,” Quarterly Journal of
Mathematics—Oxford Journals, Vol. 2, No. 20, 1949, pp.
31-36.
[9] G. A. Edgar, “Measure, Topology, and Fractal Geome-
try,” Springer-Verlag, New York, 1990.
[10] M. Elekes and T. Keleti, “Borel Sets which are Null or
Non-
-Finite for Every Translation Invariant Measure,”
Advances in Mathematics, Vol. 201, No. 1, 2006, pp.
102-115. doi:10.1016/j.aim.2004.11.009
[11] K. J. Falconer, “Techniques in Fractal Geometry,” John
Wiley & Sons, Ltd., Chichester, 1997.
[12] K. J. Falconer, “The Geometry of Fractal Sets,” Cam-
bridge University Press, Cambridge, 1986.
[13] A. H. Fan, L. M. Liao, J. H. Ma and B. W. Wang, “Di-
mension of Besicovitch-Eggleston Sets in Countable
Symbolic Space,” Nonlinearity, Vol. 23, No. 5, 2010, pp.
1185-1197.
[14] L. Olsen, “On the Hausdorff Dimension of Generalized
Besicovitch-Eggleston Sets of d-Tuples of Numbers,”
Indagationes Mathematicae, Vol. 15, No. 4, 2004, pp.
535-547. doi:10.1016/S0019-3577(04)80017-X
[15] L. Olsen, “Applications of multifractal divergence points
to some sets of d-tuples of numbers defined by their
-adic expansion,” Bulletin des Sciences Mathé-
matiques, Vol. 128, No. 4, 2004, pp. 265-289.
[16] L. Olsen, “Applications of Multifractal Divergence Points
to Sets of Numbers Defined by Their
-Adic Expan-
sion,” Mathematical Proceedings of the Cambridge Phi-
losophical Society, Vol. 136, No. 1, 2004, pp. 139-165.
doi:10.1017/S0305004103007047
Copyright © 2011 SciRes. APM