
L. D. NIEM  ET  AL.275
 
 1) Can one find the precise scaling function 
 such 
that ? Is the set 
0< <B
0,11\ B0,  
immesaurable, that is, either null or non-
-finite for 
every translation invariant Borel measure on ? See 
[10], where it is shown that the set 
2
R
<1/20<
\
p
R is 
immeasurable. 
2) What is the relationship between 
x and 
2
x? 
3) How large is the set of points 
 such that 
=?
fx  Can we characterize this set of fixed points? 
4. References 
[1] L. Barreira, B.  Saussol and J. Schmeling, “Distribution of 
Frequencies of Digits via Multifractal Analysis,” Journal 
of Number Theory, Vol. 97, No. 2, 2002, pp. 410-438.  
doi:10.1016/S0022-314X(02)00003-3  
[2] A. Besicovitch, “On the Sum of Digits of Real Numbers 
Represented in the Dyadic System,” Mathematische An-
nalen, Vol. 110, No. 1, 1934, pp. 321-330.  
doi:10.1007/BF01448030 
[3] P. Billingsley, “Hausdorff Dimension in Probability The-
ory II,” Illinois Journal of Mathematics, Vol. 5, No. 2, 
1961, pp. 291-298.  
[4] H. Cajar, “Billingsley Dimension in Probability Spaces,” 
Springer-Verlag, Berlin-New York, 1981.  
[5] C. S. Dai and S. J. Taylor, “Defining Fractals in a Prob-
ability Space,” Illinois Journal of Mathematics, Vol. 38, 
No. 3 1994, pp. 480-500. 
[6] M. Das, “Billingsley’s Packing Dimension,” Proceedings 
of the American Mathematical Society, Vol. 136, No. 1, 
2008, pp. 273-278. doi:10.1090/S0002-9939-07-09069-7 
[7] M. Das, “Hausdorff Measures, Dimensions and Mutual 
Singularity,” Transactions of the American Mathematical 
Society, Vol. 357, No. 11, 2005, pp. 4249-4268.  
doi:10.1090/S0002-9947-05-04031-6  
[8] H. G. Eggleston, “The Fractional Dimension of a Set 
Defined by Decimal Properties,” Quarterly Journal of 
Mathematics—Oxford Journals, Vol. 2, No. 20, 1949, pp. 
31-36.  
[9] G. A. Edgar, “Measure, Topology, and Fractal Geome-
try,” Springer-Verlag, New York, 1990. 
[10] M. Elekes and T. Keleti, “Borel Sets which are Null or 
Non-
-Finite for Every Translation Invariant Measure,” 
Advances in Mathematics, Vol. 201, No. 1, 2006, pp. 
102-115. doi:10.1016/j.aim.2004.11.009 
[11] K. J. Falconer, “Techniques in Fractal Geometry,” John 
Wiley & Sons, Ltd., Chichester, 1997.  
[12] K. J. Falconer, “The Geometry of Fractal Sets,” Cam-
bridge University Press, Cambridge, 1986. 
[13] A. H. Fan, L. M. Liao, J. H. Ma and B. W. Wang, “Di-
mension of Besicovitch-Eggleston Sets in Countable 
Symbolic Space,” Nonlinearity, Vol. 23, No. 5, 2010, pp. 
1185-1197. 
[14] L. Olsen, “On the Hausdorff Dimension of Generalized 
Besicovitch-Eggleston Sets of d-Tuples of Numbers,” 
Indagationes Mathematicae, Vol. 15, No. 4, 2004, pp. 
535-547. doi:10.1016/S0019-3577(04)80017-X 
[15] L. Olsen, “Applications of multifractal divergence points 
to some sets of d-tuples of numbers defined by their 
-adic expansion,” Bulletin des Sciences Mathé-
matiques, Vol. 128, No. 4, 2004, pp. 265-289.  
[16] L. Olsen, “Applications of Multifractal Divergence Points 
to Sets of Numbers Defined by Their 
-Adic Expan-
sion,” Mathematical Proceedings of the Cambridge Phi-
losophical Society, Vol. 136, No. 1, 2004, pp. 139-165.  
doi:10.1017/S0305004103007047 
 
Copyright © 2011 SciRes.                                                                                 APM