G. VARADHARAJAN ET AL.

1144

3

an d

are derived using the HPM. The primary result

of this work is simple approximate calculations of con-

centrations for all values of dimensionless parameters

12 3

, , and

. The HPM is an extremely simple

method and it is also a promising method to solve other

non-linear equations. This method can be easily extended

nds of system of coupled non-linear equations in

multi-substrate systems and networks of coupled enzyme

reactions.

6. Acknowledgements

This work was supported by the Council of Scientific

and Industrial Research (CSIR No.01 (2442)/10/EMR-II),

Governmen

to all ki

urai, In

t of Indi

dia for their

ui

ens, J. C. Ma

a. The authors also thank Secretary,

and Principal, Head of the

The Madura College, Ma-

constant encouragement.

, pp. 1123-

z, M. B. Amao, A. N. P Hiner, F.

rtins, E. Brosens, K. Van Belle, D. M.

The Madura College Board

Department of Mathematics,

d

7. References

[1] M. P. Deutscher, “Rat Liver Glutamyl Ribonucleic Acid

Synthetase. I. Purification and Evidence for Separate En-

zymes for Glutamic Acid and Glutamine,” Journal of

Biological Chemistry, Vol. 242, No. 6, 1967

1131.

2] J. Hernadez-R[ Gar-

cia-Canovas and M. Acosta, “Catalase-Like Activity of

Horseradish Peroxidase: Relationship to Enzyme Inacti-

vation by H2O2,” Biochemical Journal, Vol. 354, No. 2,

2001, pp. 107-114.

[3] J. Mess

Jacobs, R. Willem and L. Wyns, “Kinetics and Active

Site Dynamics of Staphylococcus Aureus Reductase,”

Journal of Biological Inorganic Chemistry, Vol. 7, 2002,

pp. 146-156. doi:10.1007/s007750100282

[4] S. Ho and G. S. Mittal, “High Voltage Pulsed Electrical

Field for Liquid Food Pasteurization,” Food Reviews In-

ternational, Vol. 16, No. 4, 2000, pp. 395-434.

doi:10.1081/FRI-100102317

[5] C. P. Yao and R. H Levy, “Inhibition-Based Metabolic

Drug-Drug Interactions: Predictions from in Vitro Data,”

Journal of Pharmaceutical Sciences, Vol. 91, No. 9, 2002,

pp. 1923-1935. doi:10.1002/jps.10179

[6] S. G. Waley, “Kinetics of Suicide Substrates,”

mical Journal, Vol. 185, 1980

Bioche-

, pp. 771-773.

e Kinetik der In-

2-3, 2007, pp. 269-274.

[7] S. G. Waley, “Kinetics of Suicide Substrates. Practical

Procedures for Determining Parameters,” Biochemical

Journal, Vol. 227, 1985, pp. 843-849.

[8] L. Michaelis and M. L. Menten, “Di

vertinwirking,” Biochemische Zeitschrift, Vol. 49, 1913,

pp. 333-369.

[9] G. E. Briggs and J. B. S. Haldane, “A Note on the Kinet-

ics of Enzyme Action,” Biochemical Journal, Vol. 19, No.

2, 1925, pp. 338-339.

[10] S. Schnell and S. M. Hanson, “A Test for Measuring the

Effects of Enzyme Inactivation,” Biophysical Chemistry,

Vol. 125, No.

doi:10.1016/j.bpc.2006.08.010

[11] S. J. Li and Y. X. Liu, “An Improved Approach to

Nonlinear Dynamical System Identification Using PID

Z. Nturforsch, “Applica-

pplied Mechanics and Engineering, Vol.

Neural Networks,” International Journal of Nonlinear

Sciences and Numerical Simulation, Vol. 7, No. 2, 2006,

pp. 177-182.

[12] M. M. Mousa, S. F. Ragab and

tion of the Homotopy Perturbation Method to Linear and

Nonlinear Schrödinger Equations,” Zeitschrift für Natur-

forschung, Vol. 63, 2008, pp. 140-144.

[13] J. H. He, “Homotopy Perturbation Technique,” Computer

Methods in A

178, 1999, pp. 257-262.

doi:10.1016/S0045-7825(99)00018-3

[14] J. H. He, “Homotopy Perturbation Method: A New

Nonlinear Analytical Technique,” Applied Mathematics

and Computation, Vol. 135, No. 1, 2003, pp. 73-79.

doi:10.1016/S0096-3003(01)00312-5

[15] J. H. He, “A Simple Per

Equation,” Applied Mathematics and

turbation Approach to Blasius

Computation, Vol.

140, No. 2-3, 2003, pp. 217-222.

doi:10.1016/S0096-3003(02)00189-3

[16] J. H. He, “Some Asymptotic Methods for Stro

Nonlinear Equations,” International J

ngly

ournal of Modern

Physics B, Vol. 20, No. 10, 2006, pp. 1141-1199.

doi:10.1142/S0217979206033796

[17] J. H. He, G. C. Wu and F. Austin

tion Method Which Should Be Fol

, “The Variational Itera-

lowed,” Nonlinear

lems,”

r Mechanics, Vol. 35,

Science Letters A, Vol. 1, No. 1, 2010, pp. 1-30.

[18] J. H. He, “A Coupling Method of a Homotopy Technique

and a Perturbation Technique for Non-Linear Prob

International Journal of Non-Linea

No. 1, 2000, pp. 37-43.

doi:10.1016/S0020-7462(98)00085-7

[19] D. D. Ganji, M. Amini and A. Kolahdooz, “Analytical

jendran, “Mathematical Model-

erometric Immobi-

Investigation of Hyperbolic Equations via He’s Methods,”

American Journal of Engineering and Applied Sciences,

Vol. 1, No. 4, 2008, pp. 399-407.

[20] S. Loghambal and L. Ra

ing of Diffusion and Kinetics of Amp

lized Enzyme Electrodes,” Electrochimica Acta, Vol. 55,

No. 18, 2010, pp. 5230-5238.

doi:10.1016/j.electacta.2010.04.050

[21] A. Meena and L. Rajendran, “Mathematical Modeling of

Amperometric and Potentiometric Biosensors and System

of Non-Linear Equations—Homotopy Perturbation Ap-

proach,” Journal of Electroanalytical Chemistry, Vol.

644, No. 1, 2010, pp. 50-59.

doi:10.1016/j.jelechem.2010.03.027

[22] A. Eswari and L. Rajendran, “Analytical Solution of

Steady State Current an Enzyme Modified Microcylinder

Electrodes,” Journal of Electroanalytical Chemistry, Vol.

648, No. 1, 2010, pp. 36-46.

doi:10.1016/j.jelechem.2010.07.002

Copyright © 2011 SciRes. AM