
T. K. GHORAI
35
and Z. D. Zhang, “An Ordered Cubic Im3m Mesoporous
Cr-TiO2 Visible Light Photocatalyst,” Chemical Commu-
nications, Vol. 25, 2006, pp. 2717-2719.
doi:10.1039/b603456j
[2] T. Tatsuma, S. Tachibana, T. Miwa, D. A. Tryk and A.
Fujishima, “Remote Bleaching of Methylene Blue by
UV-Irradiated TiO2 in the Gas Phase,” Journal of Physi-
cal Chemistry B, Vol. 103, No. 38, 1999, pp. 8033-8035.
doi:10.1021/jp9918297
[3] S. Parra, S. E. Stanca, I. Guasaquillo and K. R. Thampi,
“Photocatalytic Degradation of Atrazine Using Sus-
pended and Supported TiO2,” Applied Catalysis B: Envi-
ronmental, Vol. 51, No. 2, 2004, pp. 107-116.
doi:10.1016/j.apcatb.2004.01.021
[4] T. Tatsuma, S. Tachibana and A. Fujishima, “Remote
Oxidation of Organic Compounds by UV-Irradiated TiO2
via the Gas Phase,” Journal of Physical Chemistry B,
2001, Vol. 105, No. 29, pp. 6987-6992.
doi:10.1021/jp011108j
[5] Y. Chen, K. Wang and L. Lou, “Photodegradationof Dye
Pollutants on Silica Gel Supported Ti02 Particles Under-
visible Light Irradiation,” Journal of Photochemistry and
Photobiology A: Chemistry, Vol. 163, No. 1-2, 2004, pp.
281-287. doi:10.1016/j.jphotochem.2003.12.012
[6] K. Kawahara, Y. Ohko, T. Tatsuma and A. Fujishima,
“Surface Diffusion Behavior of Photo-Generated Active
Species or Holes on TiO2 Photocatalysts,” Physical
Chemistry Chemical Physics, 2003, Vol. 5, No. 21, pp.
4764-4766. doi:10.1039/b311230f
[7] I. K. Konstantinou and T. A. Albanis, “TiO2-Assisted
Photocatalytic Degradation of Azo Dyes in Aqueous So-
lution: Kinetic and Mechanistic Investigations,” Applied
Catalysis B: Environmental, Vol. 49, No. 1, 2004, pp.
1-14. doi:10.1016/j.apcatb.2003.11.010
[8] N. L. Wu, M. S. Lee, Z. J. Pon and J. Z. Hsu, “Effect of
Calcination Atmosphere on TiO2 Photocatalysis in Hy-
drogen Production from Methanol/Water Solution,” Jour-
nal of Photochemistry and Photobiology A: Chemistry,
Vol. 163, No. 1-2, 2004, pp. 277-280.
doi:10.1016/j.jphotochem.2003.12.009
[9] H. Q. Zhan and H. Tian, “Photocatalytic Degradation of
Acid Azo Dyes in Aqueous TiO2 Suspension I. The Ef-
fect of Substituents,” Dyes and Pigments, Vol. 37, No. 3,
1998, pp. 231-239. doi:10.1016/S0143-7208(97)00060-0
[10] A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A.
Martínez-Arias, M. Fernandez-Garcia, J. C. Conesa and J.
Soria, “Visible Light-Activated Nanosized Doped-TiO2
Photocatalysts,” Chemical Communications, 2001, pp.
2718-2719. doi:10.1039/b107314a
[11] C. Adan, A. Bahamonde, M. Fernandez-Garcia and A.
Martinez-Arias, “Structure and Activity of Nanosized
Iron-Doped Anatase TiO2 Catalysts for Phenol Photo-
catalytic Degradation,” Applied Catalysis B: Environ-
mental, Vol. 72, No. 1-2, 2007, pp. 11-17.
doi:10.1016/j.apcatb.2006.09.018
[12] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa,
H. Mori, T. Sakata and S. Yanagida, “Hydrothermal Syn-
thesis of Nanosized Anatase and Rutile TiO2 Using
Amorphous Phase TiO2,” Journal of Materials Chemistry,
Vol. 11, No. 6, 2001, pp. 1694-1703.
doi:10.1039/b008974p
[13] N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A.
J. McQuillan, A. M. Mills and M. J. Ryan, “Characterisa-
tion and Activity of Sol-Gel Prepared TiO/sub2 Photo-
catalysts Modified with Ca, Sr or Ba Ion Additives,”
Journal of Materials Chemistry, Vol. 10, No. 10, 2000,
pp. 2358-2363.
[14] R. Niishiro, H. Kato and A. Kudo, “Nickel and Either
Tantalum or Niobium-Codoped TiO2 and SrTiO3 Photo-
Catalysts with Visible-Light Response for H2 or O2 Evo-
lution from Aqueous Solutions,” Physical Chemistry
Chemical Physics, Vol. 7, 2005, pp. 2241-2245.
doi:10.1039/b502147b
[15] C.-Y. Wang, C. Bottcher, D. W. Bahnemann and J. K.
Dohrmann, “A Comparative Study of Nanometer Sized
Fe(III)-Doped TiO2 Photocatalysts: Synthesis, Charac-
terization and Activity,” Journal of Materials Chemistry,
Vol. 13, 2003, pp. 2322-2329. doi:10.1039/b303716a
[16] M. Gratzel and F. H. Russell, “Electron Paramagnetic
Resonance Studies of Doped Titanium Dioxide Colloids,”
The Journal of Physical Chemistry, Vol. 94, No. 6, 1990,
pp. 2566-2572. doi:10.1021/j100369a064
[17] M. A. Barakata, H. Schaeffer, G. Hayes and S. Is-
mat-Shah, “Photocatalytic Degradation of 2-Chlorophenol
by Co-Doped TiO2 Nanoparticles,” Applied Catalysis B:
Environmental, Vol. 57, No. 1, 2004, pp. 23-30.
doi:10.1016/j.apcatb.2004.10.001
[18] S. H. Woo, W. W. Kim, S. J. Kim and C. K. Rhee,
“Photocatalytic Behaviors of Transition Metal Ion Doped
TiO2 Powder Synthesized by Mechanical Alloying,” Ma-
terials Science and Engineering: A, Vol. 449-451, 2007,
pp. 1151-1154. doi:10.1016/j.msea.2006.01.165
[19] Z. Hua, Z. Manping, X. Zongfeng and G. K.-C. Low,
“Titanium Dioxide Mediated Photocatalytic Degradation
of Monocrotophos ,” Water Research, Vol. 29, No. 12,
1995, pp. 2681-2688. doi:10.1016/0043-1354(95)00141-7
[20] D. Beydoun, H. Tse, R. Amal, G. Low and S. McEvoy,
“Effect of Copper(II) on the Photocatalytic Degradation
of Sucrose,” Journal of Molecular Catalysis A: Chemical,
Vol. 177, No. 2, 2002, pp. 265-272.
doi:10.1016/S1381-1169(01)00272-2
[21] M. Bideau, B. Claudel, L. Faure and H. Kazouan, “The
Photo-Oxidation of Acetic Acid by Oxygen in the Pres-
ence of Titanium Dioxide and Dissolved Copper Ions,”
Journal of Photochemistry and Photobiology A: Chemis-
try, Vol. 61, No. 2, 1991, pp. 269-280.
doi:10.1016/1010-6030(91)85095-X
[22] K. I. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and
A. Itaya, “Heterogeneous Photocatalytic Decomposition
of Phenol over TiO2 Powder,” Bulletin of the Chemical
Society of Japan, Vol. 58, 1985, p. 20.
[23] T. K. Ghorai, D. Dhak, S. K. Biswas, S. Dalai and P.
Pramanik, “Photocatalytic Oxidation of Organic Dyes by
Nano-Sized Metal Molybdate Incorporated Titanium Di-
oxide (MxMoxTi1−xO6) (M = Ni, Cu, Zn) Photocatalysts,”
Copyright © 2011 SciRes. OJPC