S. A. HOSSEINI ET AL.
Copyright © 2011 SciRes. OJPC
26
Figure 4. SEM image of synthesized gamma-alumina.
6. References
[1] S. Wang, X. Li, S. Wang, Y. Li and Y. Zhai, “Synthesis
of Gamma-Alumina via Precipitation in Ethanol,” Mate-
rials Letters, Vol. 62, No. 20, 2009, pp. 3552-3554.
doi:10.1016/j.matlet.2008.03.048
[2] W. Gitzen, “Aluminas as Ceramic Material,” American
Ceramic Society, Columbus, 1970.
[3] J. McColm, “Ceramic Science for Materials Technolo-
gist,” Chapman and Hall, New York, 1983.
[4] H. H. Murray, “Traditional and Newapplications for Kao-
lin, Smectite, and Palygorskite: A General Overview,”
Applied Clay Science, Vol. 17, No. 5-6, 2000, pp. 207-
211.
[5] R. H. Zhao, F. Guo, Y. Q. Hu and H. Q. Zhao, “Self-
Assembly Synthesis of Organized Mesoporous Alumina
by Precipitation Method in Aqueous Solution,” Micro-
porous and Mesoporous Materials, Vol. 93, No. 1-3,
2006, pp. 212-216.
[6] E. Kato, K. Diamon, M. Nanbu, “Decomposition of Two
Aluminum Sulfates and Characterization of the Resultant
Aluminas,” Journal of the American Ceramic Society,
Vol. 64, No. 8, 1981, pp. 436-443.
doi:10.1111/j.1151-2916.1981.tb09892.x
[7] J. E. Blendell, H. K. Bowen and R. L. Coble, “Effects of
Particle Distribution on Transformation-Induced Tough-
ening in an MgO-PSZ,” American Ceramic Society Bul-
letin, Vol. 63, 1984, pp. 799-804.
[8] F. W. Dynys and J. W.,Halloran, “Alpha Alumina For-
mation in Alum-Derived Gamma Alumina,”Journal of
the American Ceramic Society, Vol. 65, No. 9, 1982, pp.
442-448. doi:10.1111/j.1151-2916.1982.tb10511.x
[9] G. Paglia, C. E. Buckley, A. L. Rohl, R. D. Hart, K.
Winter and A. J. Studer, “Boehmite Derived γ-Alumina
System. 1. Structural Evolution with Temperature, with
the Identification and Structural Determination of a New
Transition Phase, γ’-Alumina,” Chemistry of Materials,
Vol. 16, No. 2, 2004, p. 220. doi:10.1021/cm034917j
[10] Y. H. Wang, J. Wang, M. Q. Shen and W. L. Wang,
“Synthesis and Properties of Thermostable γ-Alumina
Prepared by Hydrolysis of Phosphide Aluminum,” Jour-
nal of Alloys and Compounds, Vol. 467, No. 1-2, 2009,
pp. 405-412.
[11] K. M. Parida, A. C. Pradhan, J. Das and N. Sahu, “Syn-
thesis and Characterization of Nano-Sized Porous Gam-
ma-Alumina by Control Precipitation Method,” Materials
Chemistry and Physics, Vol. 113, No. 1, 2009, pp. 244-
248.
[12] Y. Yajima, M. Hida, S. Taruta and K. Kitajima, “Pulse
Electric Current Sintering and Strength of Sintered Alu-
mina Using γ-Alumina Powders Prepared by the Sol-Gel
Method,” Journal of the Ceramic Society of Japan, Vol.
111, No. 1294, 2003, pp. 419-425.
doi:10.2109/jcersj.111.419
[13] G. P. Johnston, R. Muenchausen, D. M. Smith, W. Fahr-
enholtz and S. Foltyn, “Reactive Laser Ablation Synthe-
sis of Nanosize Alumina Powder,” Journal of the Ameri-
can Ceramic Society, Vol. 75, No. 12, 1992, pp.
3293-3298. doi:10.1111/j.1151-2916.1992.tb04424.x
[14] T. Ogihara, H. Nakagawa, T. Yanagawa, N. Ogata and K.
Yoshida, “Preparation of Monodisperse, Spherical Alu-
mina Powders from Alkoxides,” Journal of the American
Ceramic Society, Vol. 74, 1991, p. 2263.
[15] E. Kato, K. Daimon and M. Nanbu, “Decomposition of
Two Aluminum Sulfates and Characterization of the Re-
sultant Aluminas,” Journal of the American Ceramic So-
ciety, Vol. 64, 1981, p. 436.
[16] H. Noda, K. Muramoto, and H. Kim, “Preparation of
Nano-Structured Ceramics Using Nanosized Al2O3 Parti-
cles,” Journal of Materials Science, Vol. 38, No. 9, 2003,
pp. 2043-2047. doi:10.1023/A:1023553925110
[17] W. A. Deer, R. A. Howie and J. Zussman, “An Introduc-
tion to the Rock-Forming Minerals,” 2 Edition, Longman,
Harlow, 1992.
[18] M. Bellotto, A. Gualtieri, G. Artioli and S. M. Clark,
“Kinetic Study of the Kaolinite-Mullite Reaction Se-
quence. Part I: Kaolinite Dehydroxylation,” Physics and
Chemistry of Minerals, Vol. 22, No. 4, 1995, pp. 207-214.
doi:10.1007/BF00202253
[19] J. H. Park, S. W. Kim, S. H. Lee, H. S. Kim, S. S. Park