Applied Mathematics, 2011, 2, 1051-1058
doi:10.4236/am.2011.28146 Published Online August 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
On Starshaped Intuitionistic Fuzzy Sets
Weihua Xu1,2, Yufeng Liu1, Wenxin Sun1
1The Mathematics an d Statistics, Chongqing University of Technology, Chongqing, China
2School of Management, Xian Jiaotong University, Xian, China
E-mail: chxuwh @gmail.com, liuyufeng@cqut.edu.cn, sunxuxin520@163.com
Received May 23, 201 1; revised June 28, 2011; accepted July 6, 2011
Abstract
Intuitionistic fuzzy starshaped sets (i.f.s.) is a generalized model of fuzzy starshaped set. By the definition of
i.f.s., the intuitionistic fuzzy general starshaped sets (i.f.g.s.), intuitionistic fuzzy quasi-starshaped sets
(i.f.q-s.) and intuitionistic fuzzy pseudo-starshaped sets (i.f.p-s.) are proposed and the relationships among
them are studied. The equivalent discrimination conditions of i.f.q-s. and i.f.p-s. are presented on the basis of
their properties which are meaningful for the research of the generalized fuzzy starshaped sets. Moreover, the
invariance of the two given fuzzy sets under the translation transformation and linear reversible transforma-
tion are discussed.
Keywords: Intuitionistic Fuzzy Starshaped Sets, Cut Sets, Starshapedness, Convex Sets
1. Introduction
Since the theory of fuzzy set was proposed by Zadeh in
1965, it has been widely used such as fuzzy control, fuzzy
recognition, fuzzy evaluation, system theory, information
retrieval and so on. The intuitionistic fuzzy set theory,
proposed by Atanassov [1], is an extension of the fuzzy set
theory. Th e core idea of in tuitionistic fuz zy sets is added a
non-membership functions in the basis of membership
functions, which can cooperate with the membership func-
tion and describe the fuzzy object of the world more exqui-
sitely. At p resent, the research of in tuition fuzz y set theor y
is more active in international, especially the research of
some similar problems in fuzzy set. Through more than 20
years of d evelop ment, the in tuitionis tic fuzzy set has mad e
a lot of important achievements [2-9].
With the deepening of the research work and expan-
sion, another more worthy of concern is the emergence
of fuzzy starshaped set theory [10] and its applications.
Fuzzy starshaped sets have more abundant properties and
characteristics, it is a directly extension of the fuzzy set
theory and convex set, many useful results have been
obtained.
In this paper, we define a new kind of fuzzy set which
is intuition fuzzy set, by combining the fuzzy starshaped
set and intuition fuzzy set. By the basic definition of in-
tuitionistic fuzzy starshaped set, we introduce some new
different types of starshapedness. We discuss the rela-
tionships among these different types of starshapedness,
and obtain some important properties.
2. Preliminaries
Let ,n
x
yR,
|
x
yzzx y
is a line segment,
where 0
,0
,1
. A set is simply said
to be starshaped relative to a point Sn
x
R, if
x
yS
for any point
S
. A set is simply said to be star-
shaped, which means that there exists a point
S
x
in
such that is starshaped relative to
n
R
S
x
. The kernel
of is the set of all points
ker SS
x
S such that
x
yS for any
S
.
Definition 2.1. Let denote an universe of dis-
course. An intuitionistic fuzzy set
n
R
A
is an object hav-
ing the form


,,|
n
AA
Ax xxxR

where , satisfy
:[0,
n
AR
01
1]
:[0,
n
AR
1]

AA

for all n
x
R,
A
and
A
are called
the degree of membership and the one degree of non-
membership of the element
x
to
A
respectively. Let
n
F
R
n
R
be the classes of normal intuitionistic fuzzy sets
on , that is


|1,
n
AA
xRxx 0


is non-
empty.
Example 2.1. Let


,,|
AA
A
xx xxR

,
where
W. H. XU ET AL.
1052
1,0]
0,1]
wise
ise

1[
1(
0other
A
xx
xx x


 

[1,0]
0otherw
,
A
xx
xx x
 
 
 
Then

A
FR.
Definition 2.2. An intuitionistic fuzzy set
n
A
FR
is called quasi-convex if





min ,
AAA
x
yyx y
 





max ,
AAA
x
yyx y
 
for all ,n
x
yR, [0,1]
Definition 2.3. Let

,n
A
BFR, the union, inter-
section and complement of
A
and
B are defined as
follows,






,, |
n
ABAB
A
Bx xxxxxR 







,, |
n
ABAB
A
Bx xxxxxR 





,1 ,1|
cn
AA
A
xx xx 

R
Definition 2.4. [11] Let

,n
A
BFR, ,[0,1]
,
the [,]
cut , [,)

cut, (,]

cut and
,
cut of
A
are defined as follows:

[,] |, ,
AA
AxxXx x 



[,) |, ,
AA
AxxXxx 



(,] |, ,
AA
AxxXx x 



(,) |, ,
AA
AxxXxx 


3. Starshaped Intuitionistic Fuzzy Sets
Definition 3.1 An intuitionistic fuzzy set
n
A
FR is
said to be i.f.s. relative to n
y
R if



AA
x
yy x
 
and



AA
x
yy x
 
for all n
x
R, [0,1]
,
Proposition 3.1 Let
n
A
FR is i.f.s. relative to
n
y
R, then



sup 1
n
AA
xR
yx




inf 0
n
AA
xR
yx

Proof. Let
A
is i.f.s. relative to , then for all y
n
x
R,

AA
x
yy x
 
and

AA
x
yy x
 
are true for 01
.Thus, only take 0
, it can be
found that
AA
y
x
and
 

AA
y
x
are
true for all n
x
R.
Hence


sup 1
n
AA
xR
yx

and


inf 0
n
AA
xR
yx

Example 3.1. The intuitionistic fuzzy
A
FR
with

e(
e(0,
x
Ax
x
xx
 

,0]
)

1e( ,0]
1e(0, )
x
Ax
x
xx


is i.f.s. relative to0y
.
Proposition 3. 2. An intuitionistic fuzzy set
n
A
FR is i.f.s. respect to iff its level sets
n
yR
are starshaped relative to y.
Proof. Suppose

,
A
is starshaped relative to
n
yR
for all],[0,1
. For n
x
R
, let

A
x

,
A
x

,
then
[,]
xy A
. That is, for any[0.1]

AA
x
yy x
 
and

AA
x
yy x
 
Conversely, if for all n
x
R, [0,1]
,

AA
x
yy x

and

AA
x
yy x
 
hold. Since
[,]
A

, there exists
[,]
xA
, that
means
Ax()
and
()
Ax
. Hence,

AA
xy yx


and
Copyright © 2011 SciRes. AM
W. H. XU ET AL.
1053



AA
xy yx 

for any [0,1]
.
So
[,]
xy A
. Thus
[,]
A
is starshaped relative to
y.
Definition 3.2. An intuitionistic fuzzy set
n
A
FR
is said to be i.f.g.s. if all level sets are starshaped sets in
.
n
R
Definition 3.3. An intuitionistic fuzzy set
n
A
FR
is said to be i.f.q-s. relative to
if for all
n
yR
n
x
R,[0,1]
, the following hold,




min ,
AAA
x
yx
 
y
A





max ,
AA
x
yyx x
 
Definition 3.4 An intuitionistic fuzzy set
n
A
FR
is said to be i.f.p-s. relative to n
y
R if for all
n
x
R,[0,1]
, the following are true,


 

1
AAA
x
yy xy 



 

1
AAA
x
yy xy 

Definition 3.4. Let
ker
A
(respectively,
kerqA,

kerpA) be the totality of such that
n
yR
A
is
i.f.s. (respectively, i.f.q-s., i.f.q-s.) relative to.
y
Definition 3.5. The intuitionistic fuzzy hypograph of
A
denoted by

.fhpy A, is defined as
.().() .()
f
hpyAf hpyf hpy
where




.,|,0,
AA
fhpyxt x Rtx








.,|,
AA
f hpyxsxR sx




,1
Theorem 3.1. Let

n
A
FRis i.f.g.s. and
[,]
keryA
iff

n
A
FR is i.f.s. relative to . y
Proof. ” Since
n
A
FR is i.f.g.s. and
[,]
,ker A


, that is
[,]
,keryA

. Then
[,]
A
is starshaped relative to. By Proposition 3.1 we get
that y
A
is i.f.s. relative to. y
” it follows directly from Definition 3.2 and
Proposition 3.1.
Theorem 3.2. Let
n
A
FR is i.f.p-s. relative to
n
yR, then it is i.f.q-s. relative to. y
Proof. Since for all n
x
R, [0,1]
, the following
hold,
 



1
min ,
AA
AA
A
x
yy xy
xy
 


 



1
max ,
AA
AA
A
x
yy xy
xy
 
 

Thus
A
is i.f.q-s. relative to. y
Remark 3.1. The inverse statements do not hold in
general as shown in the following example.
Example 3.3. The intuitionistic fuzzy
n
A
FR with

2
2[
[1,1]
2[1
0 otherwise
A
xx
xx
xxx
2,1]
,2]



 


2
1[2
[1,1]
1[1,
1 otherwise
A
xx
xx
xxx
,1]
2]
 
 
 
 
is i.f.q-s. relative to0y
. But it is not i.f.p-s. relative to
0y
.
Theorem 3.3. Let
n
A
FR is i.f.q-s. relative to
, then
n
yR


sup 1
n
AA
xR
yx



inf 0
n
AA
xR
yx

iff
n
A
FR is i.f.s. relative to. y
Proof.” Since

n
A
FR is i.f.q-s. relative to
,
n
yR


sup 1
n
AA
xR
yx

and


inf 0
n
AA
xR
yx

then for all n
x
R, [0,1]
, we have



min ,
AAAA
x
yyx yx 
 



max ,
AAAA
x
yyx yx 
 
Hence
A
it is i.f.s. relative to. y
” Since
A
is i.f.s. relative to,that means y
n
x
R , [0,1]
,

AA
x
yy x
 
and
Copyright © 2011 SciRes. AM
1054 W. H. XU ET AL.



AA
x
yy x

.
Take 0
, we get


AA
y
x

and
AA
y
x
for alln
x
R.
Thus,





min ,
AA
AA
xy yx
x
y








max ,
AA
AA
xy yx
x
y



Hence,
A
is i.f.q-s. relative to , y



sup 1
n
AA
xR
yx





inf 0
n
AA
xR
yx

Theorem 3.4. Let
n
A
FR is i.f.p-s. relative to
, if
n
yR



sup 1
n
AA
xR
yx


and



inf 0
n
AA
xR
yx


then it is i.f.s. relative to .
y
Proof. It follows from Theorem 3.2, Theorem 3.3.
Remark 3.2. The inverse statements do not hold in
general as shown in the following example.
Example 3.4. The intuitionistic fuzzy
n
A
FR
with

e(
e(0,
x
Ax
x
xx
 
,0]
)


1e( ,0]
1e(0, )
x
Ax
x
xx
 

is i.f.s. relative to. But it is not i.f.p-s. relative to
. 0y
0y
4. Basic Properties of Starshapedness of
Intuitionistic Fuzzy Sets
Proposition 4.1. If
n
A
FR

is i.f.s. relative to
, then
n
yR



sup 1
n
AA
xR
yx

and



inf 0
n
AA
xR
yx


Proof. Let
A
is i.f.s. relative to , then for all y
n
x
R, [0,1]

AA
x
yy x

and

AA
x
yy x

Take 0
, we get

AA
y
x

and
AA
y
x

for all n
x
R.
So


sup 1
n
AA
xR
yx

and


inf 0
n
AA
xR
yx

Proposition 4. 2. An intuitionistic fuzzy set
n
A
FR is i.f.s. relative to iff for all
n
yRn
x
R,
[0,1]
, the following hold,

AA
x
yxy

 
and

AA
x
yxy

 
Proof. Supposed
A
is i.f.s. relative to , that is, for
all y
n
x
R,[0,1]
,

AA
x
yy x

and

AA
x
yy x

Replacing
x
by
x
y
in the above inequality, we
can get the desired result. Similarly, we can get the con-
verse.
Proposition 4. 3. An intuitionistic fuzzy set
n
A
FR is i.f.q-s. relative to iff
n
yR

,
A
is
starshaped set relative to for
y
Ay


0,

,
Ay,1

.
Proof.” Supposed
A
is i.f.q-s. relative to ,
that is for all y
n
x
R, [0,1]
,



min ,
AAA
x
yyx y
 



max ,
AAA
x
yyx y
 
For any
0, Ay

, , if

,1
Ay



[,]
xA
,
then we have that
[,]
,xyA
. From the above inequal-
ity we get that
Axy y


Copyright © 2011 SciRes. AM
W. H. XU ET AL.
1055
and


Axy y

So
[,]
xy A
.
”, For
n
x
R, [0,1]
, if

AA
x
y

,
then let
A

y

. Accordingly we have
[,]
xy A
,that
is,





min ,
AAA
x
yyx y
 
If


AA
x
y

, then let

A
x

. Accordingly
we have
[,]
xy A
,that is,





min ,
AAA
x
yyx y
 
If


AA
x
y

, then let

A
y

.
Accordingly we have

,
xy A
A
,that is,





max ,
AA
x
yyx y
 
If
AA
x
y

, then let

A
x

. Accordingly
we have
[,]
xy A
, that is,





max ,
AAA
x
yyx y
 
.
Thus
A
is i.f.q-s. relative to .
n
yR
Proposition 4. 4. An intuitionistic fuzzy set

n
A
FR is i.f.p-s. relative to iff y
.A
f hpy
is
starshaped relative to
,A
y

y
and
.A
f hpy
is
starshaped relative to .


,A
yy
Proof.” If
A
is i.f.p-s. relative to , y

,.A
x tfhpy
and


,.A
xs fhpy
. Since
A
is i.f.p-s. relative to for any
y[0,1]
we have


 



1
1
AA
A
A
x
yy xy
ty
 





 



1
1
AA
A
A
x
yy xy
sy
 

 

.
Thus, we have



,1 ,.
A
xtyyfhyp A


 


,1 ,.
AA
xsyy fhyp
 

Hence,

.A
fhyp
is starshaped relative to

,A
yy
and

A
yp.fh
is starshaped relative to

,A
yy
.
” Assume that



,.
A
xxfhpyA
and
,.
A
xxfhpyA
. By the starshapedness of
.A
f hpy
and
A
.fhyp
we can have
 

1 .
AA
yfhpy1,xy x A


 

1 .
AA
yfhpy 1,xy x A

[0,1]
 
.
for any
. Thus
A
is i.f.p-s. relative to . y
A path in a set in is a continuous mapping
S
:[0,1]
n
R
f
SS. A set is said to be path connected if,
there exists a path
f
such that

0
f
x
and
1
f
y
for all ,
x
yS
[12]. A intuitionistic fuzzy
set
A
is said to be a path connected intuitionistic fuzzy
set if its level sets are path connected [13]. Since a star-
shaped crisp set is path connected, one can easily prove
the following proposition.
Proposition 4. 5. If
n
A
FR
is i.f.s. relative to
n
yR, or is i.f.g.s., then
A
is a path connected in-
tuitionistic fuzzy set.
Proof. It follows from Definition 3.1, Definition 3.2.
Proposition 4.6. If

n
A
FR is a intuitionistic
fuzzy quasi-convex set, then it is i.f.g.s.. Furthermore, if
n
A
FR is i.f.g.s. then
A
is i.f.s., and is a fuzzy
quasi-convex set.
Proof. If
A
is a intuitionistic fuzzy quasi-convex set,
that for all ,n
x
yR, [0,1]
, we have
mi



n ,
AA
x
yy

A
x y
 
ma



x ,
AA
x
yy

,n
A
x y
 
Then for all
x
yR
, the following hold,
xy y



,
AA
x ymin A
 

xyy



,
AA
x ymax A
 

So,
[,]
xy A
. In other words
A
is i.f.g.s..
Additionally if
n
A
FR is i.f.g.s., then

,
A
y
is
starshaped. Thus they are path convex. In other words,
they are intervals and there is at least one point in

1,0
A
. It is well known that intervals are convex sets in
, so we have that
R
A
is i.f.s. relative to y and is a
fuzzy quasi-convex set.
Proposition 4.7. If

n
A
FR
n
yR
is an intuitionistic
fuzzy and the point satisfies that
yx
infn
xR
AA
and . Then


sup
n
A
xR
yx
A
A
is intuitionistic fuzzy quasi- starshaped set relative to
, that is,
y
ker Ayq .
Copyright © 2011 SciRes. AM
1056 W. H. XU ET AL.
Proof. According to Definition 3.3, we have



infn
AA
xR
yx

and

sup
n
AA
xR
yx

. So this
statement is true.
Proposition 4.8. If
12
,n
A
AFR
n
are i.f.q-s. (re-
spectively, i.f.p-s.) relative to . Then
yR
12
A
A is
i.f.q-s. (respectively, i.f.p-s.) relative to .
y
Proof. Because that
12
,n
A
AFR
n
are i.f.q-s. rela-
tive to , for all
n
yR
x
R,[0,1]
, we have





1min,
ii
AA
i
A
x
yx






1max,
ii
AA
y
i
A
x
yxy
 
1,i,2
So,







 










12
12
12 12
2
1
max1, 1,2
min max,,
min ,
i
AA
A
AA
AAAA
xy
xyi
xx y
x
y



 
 

 
and,





















12
112 2
12 12
1
max1,1,2
max max,,max,
max ,
i
AA
A
AA AA
AA AA
xy
xyi
x
yx
xy



 

 
 
y
Hence,
12
A
A is i.f.q-s. relative to . y
If

12
,n
A
AFR
n are i.f.p-s. relative to .
Then all
n
yR
x
R[0,,1]
, we have


 
1
ii
AA
i
A
x
yy xy 
 
,


 

1
ii
AA
i
A
x
yy xy 
 
, 1,2
i
So,







 











 



12
12 12
12 12
1
min1, 1,2
min1, 1,2
min,1 min,
1
i
ii
AA
A
AA
AA AA
AA AA
xy
xyi
xyi
x
xy
xy






 
 
 
  
 
y
and





 



 




 



12
12 12
12 12
1
max1, 1,2
max1, 1,2
max,} 1max{,
()1
i
ii
AA
A
AA
AA AA
AA AA
xy
xyi
xyi
x
xy
xy






 
 
 
 
  
y
Hence
12
A
A is i.f.p-s. relative to . y
Proposition 4.9. If
12
,n
A
AFR
n
are i.f.q-s. (re-
spectively, i.f.p-s.) relative to
y
R and
12
AA
yy

,

12
AA
yy

. Then
12
A
A is
i.f.q-s. (respectively, i.f.p-s.) relative to.
y
Proof. Since
12
,n
A
AFR
n
are i.f.q-s. relative to
n
yR, for all
x
R,[0,1]
, we have




1min,
ii
AA
i
A
x
yx

y
and




1max,
ii
AA
i
A
x
yx
 
y1, 2i,
By
12
AA
yy

and , we can
get


12
AA
y

y





 










12
12
12 12
2
1
max1,1,2
min max,,
min ,
i
AA
A
AA
AAAA
xy
xyi
xx y
x
y





 
 

 
and
















12
121
112
2
1
min1, 1,2
max min,,
max ,
i
AA
A
AA A
AAA
xy
xyi
x
xy
x
y



 

 
 
Hence
12
A
A is i.f.q-s. relative to . y
Since
12 (
n
, )
A
AFR
n are i.f.p-s. relative to ,
for all
n
yR
x
R[0,1],
, we have
 
11
ii
AA
i
A
x
yx
 
y
and
 

1
ii
AA
i
A
x
yy xy 
 
, 1, 2i
Copyright © 2011 SciRes. AM
W. H. XU ET AL.
1057
From and


12
AA
yy

12
AA
yy
we can
find






 




 



12
12 12
1
max1,1,2
max1, 1,2
1
i
ii
AA
A
AA
AA AA
xy
xyi
xyi
x
y



 

 
 

 
and











 



1
12 12
21
min1, 1,2
min(1), 1,2
1
i
ii
A
A
AA
AA AA
xy
xyi
xyi
x
y


 
 
 
 
 
 
Hence
12
A
A is i.f.p-s. relative to . y
Let 0n
x
R,

n
A
FR, then the translation of
A
by 0
x
is the intuitionistic fuzzy
0
x
A defined as



00
x
AxAxx.
Proposition 4.10. If
n
A
FRy is i.f.s. (respectively,
i.f.p-s., i.f.q-s.) relative to and 0n
x
R. Then
0
x
A
0
is i.f.s. (respectively, i.f.p-s., i.f.q-s.) relative to
x
y.
Proof. We only give the proof for the case of in-
tuitionistic fuzzy starshapedness. Similarly, the others
can be proved.
For any n
x
R, since

n
A
FR is i.f.s. relative to
. We have that
y







00
0
0
A
AA
A
xxyxyx
0
0
x
yx yxx
xx




 
and







00
00
0
A
AA
A
xxyxyx
0
x
yx yxx
xx




 
So,
0
x
A is i.f.s. relative to 0
x
y.
Let be a linear invertible transformation on ,
Tn
R

n
A
FR. Then by the Extension Principle we have
that





1
xAT x
TA .
Proposition 4.11 If
n
A
FR is i.f.s. (respectively,
i.f.p-s., i.f.q-s.) relative to and T is a linear invert- y
ible transformation on . Then
n
R

TA is i.f.s. (re-
spectively, i.f.p-s., i.f.q-s.) relative to .

Ty
Proof. We only give the proof for the case of in-
tuitionistic fuzzy quasi-starshapedness. Similarly, the
others can be prove d.
For any n
x
R, since
n
A
FR is i.f.q-s. relative
to . We have that
y


 









1
1
11
min ,
min() ,
TAxTyATxy
ATx Ay
TA xTATy

  
Hence,
TA is i.f.q-s. relative to .

Ty
5. Conclusions
Intuitionistic fuzzy set and fuzzy starshaped set are some
special fuzzy sets. In this article, we introduce some new
different types of intuitionistic fuzzy starshaped set. By
discussing the relationships among these different types
of starshapedness, and obtained some important proper-
ties. Deepening people’s understanding of intuitionistic
fuzzy sets, enrich and perfect the theories of fuzzy sets.
6. Acknowledgements
The project is supported by the postdoctoral Science
Foundation of China (NO.20100481331) and the Na-
tional Natural Science Foundation of China (NO.
71071124, 11001227).
7. References
[1] K. Atanassov, “Intuitionistic Fuzzy Sets,” Fuzzy Sets and
Systems, Vol. 20, No. 1, 1986, pp. 87-96.
doi:10.1016/S0165-0114(86)80034-3
[2] S. Manro, “Common Fixed Point Theorems in Intuition-
istic Fuzzy Metric Spaces,” Applied Mathematics, No. 1,
2010, pp. 510-514.
doi:10.4236/am.2010.16067
[3] G. Deschrijive and E. E. Kerre, “On the Position of In-
tuitionistic Fuzzy Set Theory in the Framework of Theo-
ries Modelling Imprecision,” Information Sciences, Vol.
177, No. 8, 2007, pp. 1860-1866.
doi:10.1016/j.ins.2006.11.005
[4] L. Lin, X. H. Yuan and Z. Q. Xia, “Multicriteria Fuzzy
Decision-Making Methods Based on Intuitionistic Fuzzy
Sets,” Journal of Computer and System Science, Vol. 73,
No. 1, 2007, pp. 84-88.
doi:10.1016/j.jcss.2006.03.004
[5] L. K. Vlachos and G. D. Sergiadis, “Intuitionistic Fuzzy
Copyright © 2011 SciRes. AM
W. H. XU ET AL.
Copyright © 2011 SciRes. AM
1058
Information—Applications to Pattern Recognition,” Pat-
tern Recognition Letters, Vol. 28, No. 2, 2007, pp. 197-
206. doi:10.1016/j.patrec.2006.07.004
[6] H. Bustince and P. Burillo, “Structures on Intuitionistic
Fuzzy Relations,” Fuzzy Sets and Systems, Vol. 78, No. 3,
1996, pp. 293-303.
doi:10.1016/0165-0114(96)84610-0
[7] M. D. Cock, C. Cornelis and E. E. Kerre, “Intuitionistic
Fuzzy Relational Images,” Studies in Computational In-
telligence, Vol. 2, 2005, pp. 129-145.
[8] D. Coker, “An Introduction to Intuitionistic Fuzzy Topo-
logical Spaces,” Fuzzy Sets and Systems, Vol. 88, No. 1,
1997, pp. 81-89.
doi:10.1016/S0165-0114(96)00076-0
[9] G. Deschrijive and E. E. Kerre, “On the Composition of
Intuitionistic Fuzzy Relations,” Fuzzy Sets and Systems,
Vol. 136, No. 3, 2003, pp. 333-361.
doi:10.1016/S0165-0114(02)00269-5
[10] D. Qiu, L. Shu and Zh. W. Mo, “On Starshaped Fuzzy
Sets,” Fuzzy Sets and Systems, Vol. 160, No. 11, 2009, pp.
1563-1577. doi:10.1016/j.fss.2008.11.005
[11] M. Li, “Cut Sets of Intuitionistic Fuzzy Sets,” Journal of
Liaoning Normal University Vol. 30, No. 2, 2007, pp.
152-154.
[12] Y. R. Syau, “Closed and Convex Fuzzy Sets,” Fuzzy Sets
and Systems, Vol. 110, No. 2, 2000, pp. 287-291.
doi:10.1016/S0165-0114(98)00082-7
[13] J. G. Brown, “A Note on Fuzzy Set,” Information and
Control, Vol. 18, No. 1, 1971, pp. 32-39.
doi:10.1016/S0019-9958(71)90288-9