Applied Mathematics, 2011, 2, 1031-1038
doi:10.4236/am.2011.28143 Published Online August 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
On the Behavior of Solutions of the System of Rational
Difference Equations
1
11
11
, ,
11



nn
nnn
nnnn nn
n
xy
x
xy z
y
xx
yy
z
1
1
1


Abdullah Selçuk Kurbanlı1, Cengiz Çinar2, Mehmet Emre Erdoğan3
1Mathematics Department, Education Faculty, Selçuk University, Konya, Turkey
2Mathematics Department, Education Faculty, Gazi University, Ankara, Turkey
3Huglu Vocational High School, Selçuk University, Konya, Turkey
E-mail: agurban@selcuk.edu.tr, ccinar25@yahoo.com, m_emre448@hotmail.com
Received April 29, 2011; revised May 16, 2011; accepted May 24, 2011
Abstract
In this paper, we investigate the solutions of the system of difference equations 1
1
1
,
1
n
nnn
x
xyx
1
1
1
,
1
n
nnn
y
yxy
1
1
n
nnn
x
zyz
where 010101
,,,,,xxyy zz

.
Keywords: Difference Equation, Difference Equation Systems, Solutions
1. Introduction
Recently, there has been great interest in studying diffe-
rence equation systems. One of the reasons for this is a
necessity for some techniques which can be used in
investigating equations arising in mathematical models
describing real life situations in population biology,
economic, probability theory, genetics, psychology etc.
Although difference equations are very simple in form, it
is extremely difficult to understand throughly the global
behavior of their solutions; for example, see Refs. [1-28].
In this paper, we investigated the periodicity of the
solutions of the difference equation system
11
111
11
, ,
11
nn
nnn
nn nnnn1
n
x
yx
xyz
yx xy yz





f
(1.1)
where the initial conditions are arbitrary real numbers.
2. Main Results
Theorem 1. Let
010101
,,,,,yay bxcx dzez



,,
nnn
be arbitrary
real numbers and let
x
yz be a solutions of the
system (1.1). Also, assume that and
1ad 1cb
,
0,0, 0abe
and 0f
. Then all solutions of (1.1)
are


,
1
1,
n
n
n
dnodd
n even

ad
x
c cb
(1.2)


,
1
1,
n
n
n
bn
cb
y
a ad
odd
n even

(1.3)








1
1
1
1
,
,4
,4
,4
1
1
1
1
14 3,
1
1,3,
1
13,
1
12,3,
1
n
n
n
n
nn
n
n
n
ccbnk
af ad
dcb nk
be ad
zfcb nk
ad
ecb nk
ad
1, 2, 3,
2,1,2
1,1,2,
,1,
k
k
k
k
 


 
(1.4)

1032 A. S. KURBANLI ET AL.
Proof: For we have
1,2, 3,n
1
1
0111
xd
xyx ad


1
1
0111
yb
yxy cb


0
1
01
xc
zyz af
,

1
1
1
1
01
01
2
cbc
c
cb
bc
xy
x
x

0
2
10
1
11
1
ya
ya
d
xy a
ad
 
ad


1
2
10
1
1
1
1
ddcb
xad
zb
yzbe ad
e
cb

,
 
1
32
21
1
11
11
1
d
xd
ad
xd
yx ad
aadad
 

,
 
1
32
21
1
11
11
1
b
yb
cb
yb
xy cb
ccbcb
 





2
3
21
11
1
1
ccbf cb
x
zc
yz ad
aadaf

 
,





2
4
32 2
2
11
111 1
1
1
1
ccbccb
x
xbc
yx ccb cb
cb
ccb
b
 
 






2
4
32 2
2
11
111 1
1
1
1
aadaad
y
yd
xy aadad
ad
aad
ad
 
 







2
3
4
32
2
11
11
1
1
d
ade cb
x
zdcb
yz ad
b
be ad
cb

 
for assume that
nk

23
21
222311
k
kk
kk
xd
xyx ad



22
2
2122
1
1
k
k
kkk
x
xc
yx

cb


23
21
222311
k
kk
kk
yb
yxy cb



22
2
2122
1
1
k
k
kkk
y
ya
xy

ad

and


1
44
43 1
4445
1
1
k
k
kk
kk
ccb
x
zyz af ad




43
42
434 4
1
1
k
k
kk
kk
dcb
x
zyz be ad




42
41
4243
1
1
k
k
kk
kk
fcb
x
zyzad




41
4
4142
1
1
k
k
kk
kk
ecb
x
zyz ad


are true. Then 1nk
we will show that (1.2), (1.3)
and (1.4) are true. From (1.1), we have




21
21
221
1
1
111
1
1
k
k
kk
kk k
k
d
ad
x
xd
yx aadad
d
ad






21
21
221
1
1
111
1
1
k
k
kk
kk k
k
b
cb
y
yb
xy ccbcb
b
cb


.
Also, similarly from (1.1), we have






2
4
41
441 2
11
11
11
kk
k
kkk
kk k
k
ccbccb
x
zyz fcb afad
aad ad

 







21 1
41
42 1
414
21
11
11
11
kk
k
kkk
kk
kk
d
add cb
x
zyz ecb bead
b
cb ad


 


Copyright © 2011 SciRes. AM
A. S. KURBANLI ET AL.
1033
Also, we have





2
22
2121 1
1
11
11 1
1
1
kk
k
kk
kk k
k
ccbccb
x
xbb
yx ccbc
cb
cb
ccb


 
 

1





2
22
212 1
1
11
111 1
1
1
kk
k
kk
kk k
k
aad aad
y
ydd
xy aad a
ad
ad
aad

 
 

1
and





21
42
43
4241 21
1
1
1
1
11
1
1
k
k
kk
kk k
k
k
k
ccb
x
zyz ccb
aad af ad
fcb
ad








22
43
44 1
4342
22 1
1
1
1
1
11
1
1
k
k
kk
kk
kk
k
k
d
ad
x
zyz dcb
b
cbbe ad
ecb
ad




Corollary 1. Let be arbitrary real num-,,,,,abcde f
n
bers and let

,,
nn
x
yz be a
,,,,cde f
solution of the system
(1.1). If 0, 1a then we have
my
b
21 21
lim li
nn
nn
x

 

43
0,
lim ,
,
n
n
cb ad
zcbad
41
lim ,
,
n
nzc
b
ccb ad
af


,
0, cb ad
ad
f
cb ad


and
22
lim lim 0
nn
nn
xy
 


 adcb,
be
dadcb,
adcb,0
zlim 2n4
n
, 4
lim ,
,
n
nzc
b
ecbad


0, cb ad
ad
Proof. From 1 we have
0
0,,,abcd
01ad 11
ad
  
and
00111cb cb
 
Hence, we obtain
 
21
1
lim n
x
lim lim
11
,
.,
nn
nn n
dd
ad ad
nodd
dn even
  

 

 
 
21
1
lim limlim
11
,
.,
nnn
nn n
d
yb
cb cb
nodd
bn even
 


 

 
and


11
43 1
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ccbccb
zaf ad
af ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ccb ad
af
 




1
1
1
 
 


 


41
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
fcb ab
zf
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
fcbad
 




1
1
1
 
 



Similarly, we have
2
limlim
n
xccd
 
1lim10 0
nn
nn n
ccdc
 
 
Copyright © 2011 SciRes. AM
A. S. KURBANLI ET AL.
1034
and
 
2
limlim1lim10 0
nn
n
nn n
ycafaafa
 



42
11
lim
nn limlim 1
1
1
111
1
1
11 1
1
1
111
1
0,
,
,
nn
nnn
dcb dcb
zbe ad
be ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
dcb ad
be
 





 



 



 





4
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ecb cb
ze
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ecbad
 





 







 


 
1
1
1
Corollary 2. Let be arbitrary real num-
bers and let
,,,,,abcde f

,,
nnn
x
yz be a sol
0and f
ution of the system (1.1).
If 1ad,2cb ,e0
then we have
1 1
n
2 2
lim lim
nn
n
xy

 

43
0,
lim ,
,
n
n
cb ad
zcb
ccb ad
af

 
ad
ad
41
0,
lim ,
,
n
n
cb ad
zcb
f
cb ad


22
lim lim 0
nn
nn
xy
 
42
0,
lim ,
,
n
n
cb ad
zcb
dcb ad
be

 
ad
ad
Proof . From 1
4
0,
lim ,
,
n
n
cb ad
zcb
ecbad

 
1201ad ad
 we have
from 1

lim1 0
n
nad
 
1201cb cb
  we have
Hence, we have

lim1 0
n
ncb
 
 
21
1
limlimlim 11
,0
,0
nnn
nnn
d
x
dd
ad ad
d
d
 


 

 
21
1
lim limlim
11
,0
,0
nnn
nn n
b
yb
cb cb
b
b
 b


 
 

and


11
43 1
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ccbccb
zaf ad
af ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ccb ad
af
 




1
1
1
 
 


 
and
Copyright © 2011 SciRes. AM
A. S. KURBANLI ET AL.
1035


41
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
fcb cb
zf
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
fcbad
 





 







 



1
1
1
Similarly, we have
and
 
2
limlim1lim10 0
nn
n
nn n
xccbccbc
 

 
2
limlim1lim100
nn
n
nn n
yaadaada
 



42
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nnn
dcb dcb
zbe ad
be ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
dcb ad
be
 





 



 



 

1
1
1



4
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ecb cb
ze
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ecbad
 





 



 



 



,,
nnn
x
yz
1
1
1
Corollary 3. Let be the solutions of (1.1).
If
0,0e,,cbad 
and 0fthen
21 21
lim lim 0
nn
nn
xy

 
43
0,
lim ,
,
n
n
cb ad
zcb
ccb ad
af

 
ad
ad
41
0,
lim ,
,
n
n
cb ad
zcb
f
cb ad


and
22
lim lim
nn
nxy


42
0,
lim ,
,
n
n
cb ad
zcb
dcb ad
be


ad
ad
oof. From 1
4
0,
lim ,
,
n
n
cb ad
zcb
e

 
c
bad
Pr cb 01cb
  and
101ad ad
  we have
and
Hence, we have

,
lim 1,
n
n
nodd
cb neven

 

 

,
lim 1,
n
n
nodd
ad n even

 

 
 
21
1
limlimlim0 0
11
nnn
nnn
d
xd
ad ad
 d



 
21
1
limlimlim00
11
nnn
nn n
b
ybb
cb cb
 


and
Copyright © 2011 SciRes. AM
1036 A. S. KURBANLI ET AL.


11
43 1
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ccbccb
zaf ad
af ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ccb ad
af
 





 



 




1
1
1


 


41
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
fcb cb
zf
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
fcbad
 





 

1
1
1






 



Similarly, we have

 
2
limlim1lim 1
,0
,0
,0
,0
nn
n
nn n
x
ccb ccb c
candnodd
candnodd
candn even
candn even
 

 
 
 
 


and
 
2
limlim1 lim 1
,0
,0
,0
,0
nn
n
nn n
yaadaada
aandnodd
aandnodd
aandn even
aandn even
 

 
 
 
 


42
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
dcb dcb
zbe ad
be ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
dcb ad
1
1
1
 




 
be
 


 


4
11
lim limlim1
1
1
11 1
1
11 1
1
11 1
0,
,
,
nn
nn
nn n
ecbcb
ze
ad
ad
cb
ad cbadcbad
cb
ad cbadcbad
cb
ad cbadcbad
cb ad
cb ad
ecbad
 




1
1
1
 
 


 
Corollary 4. Let
,
nn
x
y be the solutions of (1.1). If
and ad cb

,2,
 , and 0e 0f
,,ab ,cd
then we have
21 21
lim lim 0
nn
nn
xy

 
43
0,
lim ,
,
n
n
cb ad
zcb
ccb ad
af

 
ad
ad
41
0,
lim ,
,
n
n
cb ad
zcb
f
cb ad

 
and
22
lim lim
nn
nn
xy
 

Copyright © 2011 SciRes. AM
A. S. KURBANLI ET AL.
1037
42
0,
lim ,
,
n
n
cb ad
zcb
dcb ad
be


ad
ad
Proof. The proof is clear from Corollary 3.
4. Acknowledgements
to the a
study.
5. References
[1] A. S. Kurbanli, C. Cinar and I. Yalcinkaya, “On the
Behavaior of Positive Solutions of the System of Rational
Difference Equations
4
0,
lim ,
,
n
n
cb ad
zcb
ecbad

 
We are grateful nonymous referees for their
valuable suggestions that improved the quality of this
1
1
1
,
1
n
nnn
x
xyx
1
1
11
n
nnn
y
yxy
,”
Mathematical and Computer Modelling, Vol. 53, No. 5-6,
2011, pp. 1261-1267.
doi:10.1016/j.mcm.2010.12.009
[2] A. S. Kurbanli, “On the Behavior of Solutions of the
System of Rational Difference Equations
1
1
1
,
1
n
nnn
x
xyx
1
1
11
n
nnn
y
yxy
,”World Applied
Sciences Journal, 2010, in Press.
. S. Kurbanli, “On the Behavior of Solutions of the
System of Rational Difference Equations
[3] A
1
1
11
n
nnn
x
xyx
, 1
1
11
n
nnn
y
yxy
, 1
1
11
n
nnn
z
zyz
,”
Discrete Dynamics in Nature and Society, 2011, in Press.
doi:10.1155/2011/932362
[4] C. Cinar, “On the Solutions of the Difference Equation
1
1
1
1
n
nnn
x
xax x
,” Applied Mathematics and Com-
pulation, Vol. 158, 2004, pp. 793-797.
[5] C. Çinar, “On the Positive Solutions of the Difference
Equation System
1
1,
nn
xy
1
11
n
nnn
y
y
x
y

,” Applied
004, pp.
Mathematics and Computation, Vol. 158, 2
303-305. doi:10.1016/j.amc.2003.08.073
[6] G. Papaschinopoulos and C
Two Nonlinear Difference
. J. Schinas, “On a System of
Equations,” Journal of
Mathematical Analysis and Applications, Vol. 219, No.
1998, pp. 415-426. doi:10.1006/jmaa.1997.5829
[7] G. Papaschinopoulos and C. J. Schinas, “On the System
of Two Difference Equations,” Journal of Mathematical
Analysis and Applications, Vol. 273, No. 2, 2002, pp.
0.1016/S0022-247X(02)00223-8294-309. doi:1
] A. Y. Özban, “On the System of Rational Difference [8
Equations 3
1
3
, yn
nn
qnq
aby
xyxy
nn

,” Applied Mathe-
matics and Computa, 2007, pp.
833-837.
tion, Vol. 188, No. 1
10.034doi:10.1016/j.amc.2006.
uations,” Computers & Mathe-
, 2002, pp. 49-867.
nal Diserence
Equation Mling Com
Vol. 52, pp. 1765-1
4-8
[9] D. Clark and M. R. S. Kulenović, “A Coupled System of
Rational Difference Eq
matics with Applications, Vol. 43
[10] D. Clark, M. R. S. Kulenović and J. F. Selgrade, “Global
Asymptotic Behavior of a Two-Dimensio
odelpetition,” Nonlinear Analysis,
, No. 7, 2003776.
doi:10.1016/S0362-546X(02)0029
of Rate Equat
[11] E. Camouzis and G. Papaschinopoulos, “Global
Asymptotic Behavior of Positive Solutions on the System
ional Differencions1,
n
nnm
xy
1
x

11n
nnm
y
yx
 ,” Applied Mathematics Letters, Vol. 17,
No. 6, 2004, pp. 733-737.
doi:10.1016/S0893-9659(04)90113-9
Liu and S. Bai, “On the System of High
Order Rational Difference Equations
[12] X. Yang, Y.
,
nnp
a
xy
np
n
yby
nq nq
x
y
71, No. 2, 2005, pp
,” Applied Mathematics and
Computation, Vol. 1. 853-856.
doi:10.1016/j.amc.2005.01.092
[13] X. Yang, “On the System of Rational Difference
Equations 1n
nnp nq
y
xA
x
y
 ,1n
nnr ns
x
yA
x
y

 ,” Journal
of Mathematical Analysis and Applications, Vol. 307, No.
1, 2005, pp. 305-311.
doi:10.1016/j.jmaa.2004.10.045
[14] M. R. S. Kulenović and Z. Nurkanović, “Global Behavior
of a Three-Dimensional Linear Fractional System of
Difference Equations,” Journal of Mathematical Analysis
n, “On the Positive
Rational Difference Equations
and Applications, Vol. 310, No. 2, 2005, pp. 673-689.
[15] A. Y. Özba Solutions of the System of
1
1
nnk
y
x,
1nn
n
y
y
mnmk
xy

al Analysis and
Applications, Vol. 323, No. 1, 2006, pp. 26-32.
,” Journal of Mathematic
doi:10.1016/j.jmaa.2005.10.031
[16] Y. Zhang, X. Yang, G. M. Megson and D. J. Evans, “On
the System of Rational Difference Equations
1,
nnp
xA
y
 1n
nnr ns
y
yA
x
y

 ,” Applied Mathematics
and Computation, Vol. 176, No. 2, 2006, pp. 403-408.
doi:10.1016/j.amc.2005.09.039
Copyright © 2011 SciRes. AM
A. S. KURBANLI ET AL.
Copyright © 2011 SciRes. AM
1038
stem
Analysis, Vol. 16, No. 2, 2009, pp. 37-50.
[23] R. Abu-Saris, C. Cinar and I. Yalcinkaya, “On the Asym-
ptotic Stability of
[17] Y. Zhang, X. Yang, D. J. Evans and C. Zhu, “On the
Nonlinear Difference Equation Sy 1,
n
ny
xA
m
n
x

1nnk
naxx
1nm
nn
x
yA
y
 nn
k
x
x,” Computers &
x
Mathematics with Applications, Vol. 56, No. 5, 2008, pp.
1172-1175.
doi:10.1016/j.camwa.2008.02.028
,” Computers & Mathematics with Appli-
cations, Vol. 53, No. 10, 200
[18] I. Yalcinkaya and C. Cinar, “Global A
7, pp. 1561-1566.
symptotic Stability [24] R. P. Agarwal, W. T. Li and P. Y. H. Pang, “Asymptotic
Behavior of a Class of Nonlinear Delay Difference Equa-
tions,” Journal of Difference Equations and Applications,
of two nonlinear Difference Equations 1,
nn
tza
z
1
1
nnn
tz
1
1
1
nn
zt
t
,” Fasciculi Mathematici, Vol. 43, 2010,
pp. 171-180.
E. M. Elsayed, “On the Sol
nn
na
zt
21, No. 3-4, 2008, pp
[20] I. Yalcinkaya, “On the Global Asymptotic Stability of a
and Society, 2008, Article ID
Vol. 8, 2002, pp. 719-728.
doi:10.1080/1023619021000000735
[25] R. P. Agarwal, “Difference Equations and Inequalites,”
2nd Editions, Marcel Dekker, New York, 2000.
[26] I. Yalcinkaya, C. Cinar and D. Simsek, “Global Asymp-
totic Stability of a System of Difference Equations,”
Applicable Analysis, Vol. 87, No. 6, June 2008, pp. 689-
699. doi:10.1080/00036810802140657
[19] utions of Higher Order
Rational System of Recursive Sequences,” Mathematica
Balkanica, Vol. . 287-296.
Second-Order System of Difference Equations,” Discrete
Dynamics in Nature
860152, 12 Pages.
[21] E. M. Elabbasy, H. EI-Metwally and E. M. Elsayed, “On
the Solutions of a Class of Difference Equations Sys-
tems,” Demonstratio Mathematica, Vol. 41, No. 1, 2008,
pp. 109-122.
[22] E. M. Elsayed, “Dynamics of a Recursive Sequence of
Higher Order,” Communications on Applied Nonlinear
[27] E. M. Elsayed, “On the Solutions of a Rational System of
Difference Equations,” Fasciculi Mathematici, Vol. 45
2010, pp. 25-36.
[28] B. Irićanin and S. Stević, “Some Systems of Nonlinear
Difference Equations of Higher Order with Periodic
Solutions,” Dynamics of Continuous, Discrete and
Impulsive Systems. Series A Mathematical Analysis, Vol.
13, No. 3-4, 2006, pp. 499-507.