U. GUPTA ET AL.

Copyright © 2011 SciRes. AM

941

clearly shown in Table 1. Increasing values of skin- fric-

tion are observed with increasing width of fluid layer in

Table 2. It is also found in Table 2, that increasing

Darcy number and dissipation results a very small in-

crement in skin-friciton. The effect of temperature on

skin-friction on both the plates is also studied and found

that the skin friction on both the plates increases when

those are heated.

5. References

[1] G. S. Beavers and D. D. Joseph, “Boundary Condition at

a Naturally Permeable Wall,” The Journal of Fluid Me-

chanics, Vol. 30, 1967, pp. 197-207.

doi:10.1017/S0022112067001375

[2] G. I. Taylor, “A Model for the Boundary Conditions of a

Porous Material Part 1,” The Journal of Fluid Mechanics,

Vol. 49, No. 2, 1971, pp. 319-326.

doi:10.1017/S0022112071002088

[3] S. Richardson, “A Model for the Boundary Conditions of

a Porous Material Part 2,” The Journal of Fluid Mechan-

ics, Vol. 49, No. 2, 1971, pp. 327-336.

doi:10.1017/S002211207100209X

[4] K. Vafai and S. J. Kim, “Fluid Mechanics of the Interface

Region between a Porous Medium and a Fluid Layer: An

Alexact Solution,” International Journal of Heat Fluid

Flow, Vol. 11, No. 3, 1990, pp. 254-256.

doi:10.1016/0142-727X(90)90045-D

[5] K. Vafai and S. J. Kim, “On the Limitation of the Brink-

man-Forchheimer-Extended Darcy Equation,” Interna-

tional Journal of Heat Fluid Flow, Vol. 16, 1995, pp. 11-

15. doi:10.1016/0142-727X(94)00002-T

[6] A. V. Kuznetsov, “Thermal Nonequilibrium Forced Con-

vection in Porous Media,” In: D. B. Inghan and I. Pop,

Eds., Transport Phenomena in Porous Media, Elsevier,

Oxford, 1998, pp. 103-129.

[7] B. Alazmi and K. Vafai, “Analysis of Fluid Flow and

Heat Transfer Interfacial Conditions between a Porous

Medium and a Fluid Layer,” International Journal of

Heat Mass Transfer, Vol. 44, No. 9, 2001, pp. 1735-1749.

doi:10.1016/S0017-9310(00)00217-9

[8] J. J. Valencia-Lopez and J. A. Ochoa-Tapia, “A Study of

Buoyancy-Driven Flow in a Confined Fluid Overlying a

Porous Layer,” International Journal of Heat Mass

Transfer, Vol. 44, No. 24, 2001, pp. 4725-4736.

doi:10.1016/S0017-9310(01)00105-3

[9] D. A. Nield and A. Bejan, “Convection in Porous Me-

dia,” New York, Springer-Verlag, 2006.

[10] M. Kaviany, “Principles of Heat Transfer in Porous Me-

dia,” Springer-Verlag, New York, 1991.

[11] K. Vafai and C. L. Tien, “Boundary and Inertia Effects

on Flow and Heat Transfer in Porous Media,” Interna-

tional Journal of Heat Mass Transfer, Vol. 24, No. 2,

1981, pp. 195-203.

doi:10.1016/0017-9310(81)90027-2

[12] M. Kaviany, “Laminar Flow through a Porous Channel

Bounded by Isothermal Parallel Plates,” International

Journal of Heat Mass Transfer, Vol. 28, No. 4, 1985, pp.

851-858.

[13] N. Rudriah and S. T. Nagraj, “Natural Convection

through Vertical Porous Stratum,” International Journal

of Engineering Science, Vol. 15, 1977, pp. 589-600.

doi:10.1016/0020-7225(77)90055-6

[14] C. Backermann, R. Viskanta and S. Ramadhyani, “Natu-

ral Convection in Vertical Enclosures Containing Simul-

taneously Fluid and Porous Layers,” The Journal of Fluid

Mechanics, Vol. 186, 1988, pp. 257-284.

doi:10.1017/S0022112088000138

[15] A. Khalili, I. S. Shivakumara and S. P. Suma, “Convec-

tive Instability in Superposed Fluid and Porous Layers

with Vertical Throughflow,” Transactions on Porous

Media, Vol. 51, 2003, pp. 1-18.

doi:10.1023/A:1021246000885

[16] T. Paul, B. K. Jha and A. K. Singh, “Free- Convection

between Vertical Walls Partially Filled with Porous Me-

dium,” Heat and Mass Transfer, Vol. 33, No. 5-6, 1998,

pp. 515-519. doi:10.1007/s002310050223

[17] A. K. Singh, T. Paul and G. R. Thorpe, “Natural Convec-

tion Due to Heat and Mass Transfer in a Composite Sys-

tem,” Heat and Mass Transfer, Vol. 35, 1999, pp. 39-48.

doi:10.1007/s002310050296

[18] H. P. G. Darcy, “Les Fontaines Publiques de la villa de

Dijon,” Dalmont, Paris, 1856.