S. Ghammamy et al. / Natural Science 3 (2011) 683-688
Copyright © 2011 SciRes. OPEN ACCESS
687687
Table 2. Calculated and experimental frequencies of com-
pounds 1 - 3 (cm–1).
Compound B3LYP/LANL2DZ Exptl
[FeCl3F]– 125, 165, 309, 362, 630 792,483
[FeCl4]– 119, 362 378
[FeCl3Br]– 110, 235, 325, 362 376
Table 3. Theoretically computed energies, zero-point vibra-
tional energies and Gibs free energy for compounds 1 - 3.
B3LYP/LANL2DZ
Parameters [FeCl3F]– [FeCl4]– [FeCl3Br]–
HF energy –268.437381–183.540346 –181.756907
Zero-point energy 0.0050809990.004219585 0.003912898
Total energy –268.4323003–183.536126 –181.7529941
Gibs Free energy –268.468259–183.5732334 –181.7912501
4. CONCLUSIONS
Three tetraalkylammonium salts of FeCl3 were synthe-
sized in one step and characterized by elemental analysis,
IR, UV/Visible, and 81Br-NMR techniques. Production
of these compounds show the ability of tetraalkylammo-
nium salts in halide addition to transition metal and main
group elements compounds and the optimized geometry
parameters calculated at B3LYP/LANL2DZ level. The
optimized structures are in good agreement with the
available experimental results. In the present article, the
infrared spectra of the ferrate halide complexes were
studied using the theoretical and experimental methods.
Our theoretical infrared spectrum of compounds 1 - 3 are
in very good agreement compared to our experimental
spectrum.
REFERENCES
[1] Zubieta, J. and Mason, R. (1973) Iron-sulfur proteins:
structural chemistry of their chromophores and related
systems. General and Chemistry, 12, 390.
doi:10.1002/anie.197303901
[2] Sharma, V.K. (2002) Potassium ferrate (VI): An envi-
ronmentally friendly oxidant. Advances in Environmental
Research, 6, 143-156.
doi:10.1016/S1093-0191(01)00119-8
[3] Sharma, V.K., Winkelmann, K., Krasnova, Y., Lee, C.
and Sohn, M. (2003) Heterogeneous photocatalytic re-
duction of ferrate (VI) in UV-irradiated titania suspen-
sions: role in enhancing destruction of nitrgen-containing
pollutants. Inernational Journal of Photoenergy, 5, 183-
190
[4] DeLuca, S.J., Chao, A.C., Smallwood, J.C. (1983) Ames
test of ferrate treated water. Journal of Environmental
Engineering, 109, 1159-1167.
doi:10.1061/(ASCE)0733-9372(1983)109:5(1159)
[5] Petira, O. (1985) Doctor of philosophy thesis, ICT, Pra-
gue.
[6] Licht, S., Wang, B. and Ghosh, S. (1999) Energetic Iron
(VI) chemistry: the super-iron battery. Scie nce , 285,
1039-1042. doi:10.1126/science.285.5430.1039
[7] Licht, S., Naschitz, V. and Wang, B. (2002) Rapid chemi-
cal synthesis of the barium ferrate super-iron Fe (VI)
compound BaFeO4. Journal of Power Sources, 109,
67-70. doi:10.1016/S0378-7753(02)00041-1
[8] Licht, S., Tel-Vered, R. and Halperin, L. (2004) Towards
efficient electrochemical synthesis of Fe (VI) ferrate, and
super-iron battery compounds. Journal Electrochemical
Society, 151, A31-A39. doi:10.1149/1.1630035
[9] Zhu, S., Brennessel, W.W., Harrison, R.G. and Que., L.
(2002) Iron coordination chemistry of N-(bis(2-pyridyl)
methyl)pyridine-2-carboxamide. Inorganic Chemistry
Acta, 337, 32-38. doi:10.1016/S0020-1693(02)01032-0
[10] Smith, M.C., Ciao, Y., Wang, H., George, S.J., Coucou-
vanis, D., Koutmos, M., Sturhahn, W., Alp, E.A., Zhao, J.
and Kramer, S.P. (2005) Normal-Mode Analysis of
FeCl4- and Fe2S2Cl42- via Vibrational Mössbauer, Reso-
nance Raman, and FT-IR Spectroscopies. Inorganic Che-
mistry, 44, 5562-5570. doi:10.1021/ic0482584
[11] Vrajmasu, V. V., Münck, E. and Bominaar, E. L. (2004)
Theoretical analysis of the jahn-teller distortions in
tetrathiolato iron (ii) complexes. Inorganic Chemistry, 43,
4862-4866. doi:10.1021/ic0400484
[12] Nori-Shargh, D., Roohi, F., Deyhimi, F. and Naeem-Aby-
aneh, R. (2006) DFT study and NBO analysis of the met-
allotropic shifts in cyclopentadienyl(trimethyl)silane -
germane and stannane. Journal of Molecular Structure:
THEOCHEM, 763, 21-28.
doi:10.1016/j.theochem.2006.01.011
[13] Frisch, M.J. and Trucks, G.W., et al. (1998) GASSIAN
98 (Revision A. 3) Gaussian Incumbent. Pittsburgh, PA,
USA.
[14] He, H.Q., Liu, J.Y., Li, Z.S. and Sun, C.C. (2006) Theo-
retical study for the reaction of C2H5Cl/C2D5Cl with Cl
atom. Journal of Molecular Structure: THEOCHEM, 763,
59- 66. doi:10.1016/j.theochem.2005.12.038
[15] Hehre, W.J., Radom, L., Schleyer, P.V.R. and Pople, J.A.,
(1986) Ab initio molecular orbital theory, Wiley, New
York.
[16] Lee, C., Yang, W., Parr, R.G. (1988) Development of the
Colle-Salvetti correlation-energy formula into a func-
tional of the electron density. Physical Reviews, 37,
785-789. doi:10.1103/PhysRevB.37.785
[17] Seminario, J.M. and Politzer, P. (1995) Modern density
function theory, A tool for chemistry, Elsevier, Amster-
dam.
[18] Christe, K.O., Wilson, W.W., Wilson, R.D., Bau, R. and
Feng, J. (1990) Syntheses, properties, and structures of
anhydrous tetramethylammonium fluoride and its 1:1
adduct with trans-3-amino-2-butenenitrile. Journal of
American Chemical Society, 112, 7619-7625.
doi:10.1021/ja00177a025
[19] Becke, A.D., (1993) Density functional theory of elec-
tronic structure. Journal of Chemical Physical, 98, 5648.
doi:10.1063/1.464913