
Effect of Slow Cooling in Reducing Pore Size in a Sintered Powder Metallurgical 6061 Aluminium Alloy877
4. Conclusions
The following points have been concluded from the
work.
1) Furnace controlled cooling after sintering reduces
porosity level due to densification of various phases
formed irrespective of aluminium grain size.
2) Due to densification of the phases, grain size
enlargement takes place which results in higher density
values.
3) Pores are mainly formed at the aluminium particle
boundaries and at boundaries of various undissolved
phases formed by the alloying elements and these phases
formed precipitates during solution heat treatment due to
which grain size enlargement and pore size reduction
takes place.
Irrespective of aluminium particle sizes, the porosity
level may be much more reduced if the compaction
pressure is further raised.
REFERENCES
[1] I. J. Polmear, “Light Alloys-Metallurgy of the Light Met-
als,” Third edition, Arnold, London, 1995.
[2] D. Slavnich, “Electric and Hybrid Vehicle,” Journal of
Automobile Engineering, Vol. 27, 2002, pp. 52-60.
[3] G. B. Schaffer, Material Forum 24, 2000, pp. 109-125.
[4] A. Salak, “Ferrous Powder Metallurgy,” Cambridge In-
ternational Science Publishing, Cambridge, 1997.
[5] N. Chawala, B. Jester and D. T. Vonk, “Bauschinger
Effect in Porous Sintered Steels,” Journal of Materials
Science Engineering A, Vol. 346, No. 1-2, 2003, pp. 266-
272. doi:10.1016/S0921-5093(02)00542-7
[6] N. Chawala, D. Babic, J. J. Williams, S. J. Polasik, M.
Marcucci and K. S. Narasimhan, “Advances in Powder
Metallurgy and Particulate Materials,” MPIF, 2002, p.
104.
[7] N. Chawala, T. F. Murphy, K. S. Narasimhan, M. Koop-
man and K. K. Chawala, “Axial Fatigue Behavior of
Binder-Treated Versus Diffusion Alloyed Powder Metal-
lurgy Steels,” Material Science Engineering A, Vol. 308,
No. 1-2, 2001, pp. 180-188.
doi:10.1016/S0921-5093(00)01990-0
[8] S. Polasik, J. J. Williams and N. Chawala, “Fatigue Crack
Initiation and Propagation of Binder-Treated Powder
Metallurgy Steels,” Metallurgical Material Transaction A,
Vol. 33A, 2002, pp. 73-81.
doi:10.1007/s11661-002-0006-8
[9] R. N. Lumely and G. B. Schaffer, “Precipitation Induced
Densification in a Sintered Al-Zn-Mg-Cu alloy,” Journal
of Scripta Materials, Vol. 55, No. 3, 2006, pp. 207-210.
doi:10.1016/j.scriptamat.2006.04.021
[10] R. N. Lumley and G. B. Schaffer, “Surface Oxide and the
Role of Magnesium in Liquid Phase Sintering,” Journal
of Scripta Materials, Vol. 35, No. 5, 1996, pp. 589-595.
doi:10.1016/1359-6462(96)00195-9
[11] R. N. Lumley and G. B. Schaffer, “The Effect of Additive
Particle Size on Sintered Al-Cu Alloys,” Journal of
Scripta Materials, Vol. 39, No. 8, 1998, pp. 1089-1094.
doi:10.1016/S1359-6462(98)00278-4
[12] ASM Handbook Metallography and Microstructures, Vol.
9, 2004.
[13] M. Rahimian, N. Ehsania, N. Parvin and H. Baharvandi,
“The Effect of Particle Size, Sintering Temperature and
Sintering Time on the Properties of Al–Al2O3 Composites,
Made by Powder Metallurgy,” Journal of Material Proc-
essing Technology, Vol. 209, No. 14, 2009, pp. 5387-
5393. doi:10.1016/j.jmatprotec.2009.04.007
[14] D. Kent, G. B. Schaffer and J. Drennan, “Age Hardening
of a Sintered Al-Cu-Mg-Si-(Sn) Alloy,” Journal of Mate-
rials Science Engineering A, Vol. 405, No. 1-2, 2005, pp.
65-73. doi:10.1016/j.msea.2005.05.104
[15] N. Showaiter and M. Youseffi, “Compaction, Sintering
and Mechanical Properties of Elemental 6061 Al Powder
with and without Sintering Aids,” Journal of Materials
and Design Vol. 29, No. 4, 2008, pp. 752-762.
doi:10.1016/j.matdes.2007.01.027
[16] J. W. Martin, “Precipitation Hardening,” Second Editon,
Oxford, 1998.
[17] W. Bonfield and P. K. Datta, “Precipitation Hardening in
Al–Cu–Si–Mg Alloy at 130-220˚C,” Journal of Material
Science, Vol. 11, 1976, pp. 1661-1666.
doi:10.1007/BF00737522
[18] L. Dutta, C. P. Harper and G. Dutta, “The Control of
Grain Size and Distribution of Particles in a (6061 Al-
loym/(Al2O3)P Composite by Solutionizing Treatment,”
Journal of Metallurgical and Materials Transactions A,
Vol. 25, 1994, pp. 1591-1602. doi:10.1007/BF02668525
Copyright © 2011 SciRes. MSA