
Structural and Electrical Characterization of Sintered Silicon Nitride Ceramic 747
defective outer shell. SEM images confirm the rear-
rangement stage and rapid initial densification and X-ray
diffraction pattern indicates that the sintered samples
basically preserve the characters of the starting powders.
These types of samples can be used as a high temperature
semi conducting materials.
REFERENCES
[1] H.-J. Choi, J.-G. Lee and Y.-W. Kim, “High Temperature
Strength and Oxidation Behavior of Hot-Pressed Silicon
Nitride-Disilicate Ceramics,” Journal of Materials Scien-
ce, Vol. 32, No. 7, 1997, pp. 1937-1942.
[2] Y. S. Zheng, K. M. Knowles, J. M. Vieira, A. B. Lopes
and F. J. Oliveira, “Microstructure, Toughness and Flex-
ural Strength of Self-Reinforced Silicon Nitride Ceramics
Doped with Yttrium Oxide and Ytterbium Oxide,” Jour-
nal of Microscopy, Vol. 201, No. 2, 2001, pp. 238-249.
doi:10.1046/j.1365-2818.2001.00839.x
[3] I. Khan and M Zulfequar, “Effect of Tellurium on Elec-
trical and Structural Properties of Sintered Silicon Nitride
Ceramics,” Physica B, Vol. 404, No. 16, 2009, pp. 2395-
3400. doi:10.1016/j.physb.2009.04.050
[4] R. D. Gould, S. A. Awan, “DC Conductivity in RF Mag-
netron Sputtered Gold–Silicon Nitride–Gold Sandwich
Structures,” Thin Solid Film, Vol. 398-399, 2001, pp.
454-459. doi:10.1016/S0040-6090(01)01383-9
[5] M. C. Hugon, F. Delmotte, B. Agiusa and J. L. Courant,
“Electrical Properties of Metal–Insulator–Semiconductor
Structures with Silicon Nitride Dielectrics Deposited by
Low Temperature Plasma Enhanced Chemical Vapor
Deposition Distributed Electron Cyclotron Resonance,”
Journal of Vacuum Science & Technology A, Vol. 15, No.
6, 1997, pp. 3143-3154.
[6] J. H. She, J. F. Yang and D. J. Daniel, “Thermal Shock
Behavior of Isotropic and Anisotropic Porous Silicon Ni-
tride,” Journal of the American Ceramic Society, Vol. 86,
No. 4, 2003, pp. 738-740.
[7] S. K. Lee, J. D. Moretti, M. J. Readey and B. R. Lawn,
“Thermal Shock Resistance of Silicon Nitrides Using an
Indentation–Quench Test,” Journal of the American Ce-
ramic Society, Vol. 85, No. 1, 2002, pp. 279-281.
[8] S. Toshimori, “Shock Synthesis of Cubic Silicon Ni-
tride,” Journal of the American Ceramic Society, Vol. 85,
No. 1, 2002, pp. 113-116.
[9] S. F. Dennis, J. O. Elizabeth and N. N. Quynhgiao, “Para-
linear Oxidation of Silicon Nitride in a Water-Vapor/
Oxygen Environment,” Journal of the American Ceramic
Society, Vol. 86, No. 8, 2003, pp. 1256-1261.
[10] M. Backhaus-Ricoult, V. Guerin, A. M. Huntz and V. S.
Urbanovich, “High-Temperature Oxidation Behavior of
High-Purity α-, β-, and Mixed Silicon Nitride Ceramics,”
Journal of the American Ceramic Society, Vol. 85, No. 2,
2002, pp. 385-392.
[11] Y. Zhang, Y. B. Cheng S. Lathabai and K. Hirao, “Ero-
sion Response of Highly Anisotropic Silicon Nitride,”
Journal of the American Ceramic Society, Vol. 88, No. 1,
2005, pp. 114-120.
[12] A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken and
R. Riedel, “Elastic Moduli and Hardness of Cubic Silicon
Nitride,” Journal of the American Ceramic Society, Vol.
85, No. 1, 2002, pp. 86-90.
[13] J. Barta, M. Manela and R. Fischer, “Si3N4 and Si2N2O
for High Performance Radome,” Materials Science and
Engineering, Vol. 71, 1984, pp. 265-272.
[14] W. Braue, G. Wo¨tting and G. Ziegler, “Influence of Sin-
tering Conditions on Mechanical Properties at Room and
High Temperatures for Selected Y-Al-Si-O-N Materials,”
Journal of Physics, Vol. 2, No. 47, 1986, pp. C1-341-
C1-345.
[15] G. D. Quinn and W. Braue, “Fracture Mechanism Maps
for Advanced Structural Ceramics,” Journal of Materials
Science, Vol. 25, No. 10, 1990, pp. 4377-4392.
doi:10.1007/BF00581096
[16] M. H. Lewis, G. Leng-Ward and C. Jasper, “Sintering
Additive Chemistry in Controlling Microstructure and
Properties of Nitride Ceramics,” In: G. L. Messing, E. R.
Fuller Jr. and H. Hausner, Eds., Ceramic Transactions,
Vol. 1, Ceramic Powder Science II, Part B, American
Ceramic Society, Westerville, OH, 1988, pp. 1019-1033.
[17] A. Vuckovic, S. Boskovic and L. Zivkovic, “Synthesis of
‘in-Situ’ Reinforced Silicon Nitride Composites,” Journal
of the Serbian Chemical Society, Vol. 69, No. 1, 2004, pp.
59-67. doi:10.2298/JSC0401059V
[18] M. K. Park, H. N. Kim, K. S. Lee, S. S. Baek, E. S. Kang,
Y. K. Baek and D. K. Kim, “Effect of Microstructure on
Dielectric Properties of Si3N4 at Microwave Frequency,”
Key Engineering Materials, Vol. 287, 2005, pp. 247-252.
doi:10.4028/www.scientific.net/KEM.287.247
[19] J. D. Walton, Journal of the American Ceramic Society,
Bull. 53, 1974, p. 255.
[20] J. S. Throp and R. I. Sharif, “Dielectric Properties of
Some Hot-Pressed Nitrogen Ceramics,” Journal of Mate-
rials Science, Vol. 12, No. 11, 1977, pp. 2274-2280.
doi:10.1007/BF00552249
[21] C. P. Gazzara, D. R. Messier, Journal of the American
Ceramic Society, Vol. 78, 1977, p. 1076.
[22] I. V. Kityk and P. Mandracci, “Nonlinear Optical Effects
in Amorphous-Like SiCON Films,” Physics, Vol. 340,
No. 5-6, June 2005, pp. 466-473.
[23] D. F. Shriver, P. W. Atkins and C. H. Langford, “Inor-
ganic Chemistry,” Freeman, New York, 1994.
[24] K. F. Purcell and J. C. Kotz, “Inorganic Chemistry,”
Saunders, Philadelphia, 1977.
[25] M. M. El-Nahass, H. M. Zeyada, M. M. El-Samanoudy, E.
M. El-Menyawy, Journal of Physics: Condensed Matter,
Vol. 18, No. 22, 2006, p. 5163.
doi:10.1088/0953-8984/18/22/016
[26] F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider and E.
Rentschler, “DC and AC Conductivity and Dielectric
Properties of the Metal-Radical Compound: Aqua[bis(2-
dimethylaminomethyl-4-NIT-phenolato)]Copper(II),” So-
lid State Communications, Vol. 128, No. 2-3, 2003, pp.
63-67.
[27] M. Kara and A. Kerber, “Manufacture and Properties of
Copyright © 2011 SciRes. MSA