Advances in Pure Mathematics, 2011, 1, 201-203
doi:10.4236/apm.2011.14035 Published Online July 2011 (http://www.SciRP.org/journal/apm)
Copyright © 2011 SciRes. APM
Note on Laguerr e Transform in Two Variables
Ajay Shukla, Ibrahim Abubaker Salehbhai
Department of Mat hematics, S.V. National Institute of Technology , Surat, India
E-mail: ajayshukla2@rediffmail.com, ibrahimmaths@gmail.com
Received March 29, 2011; revised June 10, 2011; accepted June 10, 2011
Abstract
An attempt is made to investigate the some new properties of Laguerre transform in two variables [1].
Keywords: Laguerre Transform, Laguerre Polynomials in Two Variables, Laguerre Transform in Two
Variables
1. Introduction
Debnath [2] introduced the Laguerre transform and de-
rived some properties. He also discussed the applications
in study of heat conduction [3] and to the oscillations of
a very long and heavy chain with variable tension [4].
Glaeske generalized Laguerre transform of one vari-
able as Laguerre-Pinney transformation [5], Wiener-
Laguerre transformation [6] and derived its properties.
Debnath et al. [7] reported all these work in their book.
Recently Shukla et al. [1] introduced the Laguerre
Transform of
,
f
xy as
 
 

,
00
,,,,,
e,
n
xy n
Ffxyxyn
,dd
x
yKxyf xyxy


 
 


L (1.1)
where
,
f
xy
S be a Riemann integrable function defined
on the set ,

 1
 , 1
 , is non-
negative integer and n

 


,,
0
,,
!
r
nrr
nnr
rr
xy
K
xyL xy
rn
 

(1.2)
Ragab [8] introduced Laguerre polynomials of two
variables , which is defined as

,,
n
Lxy


 

 

,
0
11
,!
!1
n
k
nnk
k
nn
Lxy n
Lxy
knk k





1
n
(1.3)
Ragab [8] also obtained,

 
,,
nn
K
xyL xLy
 
(1.4)
Therefore, the equivalent definition for the Laguerre
Transform of
,
f
xy is
,,fxyF

 
00
e,
n
xy nn dd
x
yLxLyf xyxy

 

L

(1.5)
We also used following theorems based on Shukla et
al. [1]:
Theorem 1: If


,,
n
xy

is defined as (1.2), then
 


,
00 nm
K xyK


,
e,,dd
xy nmn
xyxy xy





(1 )
where
.6
mn
(Kronecker delta symbol) is defined as
0,
1,
mn
m
mn n
,

2
11
!
n
nn
n

 
,1 and 1
 .
Srivastava and Manocha[9 ] rerted foing respollowults:
 
 

011
m
mmm
mmm
Lx
Lyt



0
2
!
1!1 11
;1,1;,,1
11
m
m
mmm
m
xyt
tmt
xt yt
mm mt
tt

 

 



 



(1.7)
wher
e2
is defined as:
202 A. SHUKLA ET AL.


 
2,0
;, ;,!!
mn
mn
mn mn
x
y
xy mn
 
(1.8)
Equation (1.7) can be easily written as

 

0
(3)
!
11
1
::_;_;_:_;_; _;
_:: 1;_;1:_;_;_;
m
mmm
mmm
mLxLyt
t
F


,,







(1.9)
where


,,
111
x
yt xtyt
tt




t
and
We used following resultbased on Erdélyi et al. [10]:


 

0
0
1111 ,1
11
xt yt
FFt
tt




!
11
!1 11
;;
1; 1;
m
mmm
mmm
m
m
mmm
mLxLyt
xyt
tmt
mm
mm
















(1.11)
and following results (1.12 and 1.13) based on Rainville
[11]:
(1.12)
1
 
0
ed0;0,1,2, ,1
xk
n
xLxx xkn

 
 



  
0
11
!
1
1!
kmm
mm
kk kk
mL xLy
kLyLxLxLy
1kxy
2. Main Results
In this section, some new properties of Laguerre Trans-
forms in two variables [1] have been obtained.
Theorem 1: If
 

0
2
,1 !1 11
;1,1;,,
11
m
m
mmm
xyt
fxyt mt
xt yt
mm mt
tt

 

 



1
 



then
 
,,,,
1
,!
n
n
n
fxyn
t
Fn

 

 

L
1
(2.1)
Here 2
is a function defi ned by (1.7).
Proof: Using (1.7) and (1.5), we have


 


00
0
,e
!ddy
11
xy
nnn
m
mmm
mmm
FxyLxLy
mLxLytx




 


Further using (1.6), we arrived at
 

0
!
,11
m
m
nn
mmm
m
mn
F
t
 


Using defi nition of mn
, we get
 

!
,11
n
n
nn
nn
n
F
t



Using defi nition of n
, we get

 
11
,!
n
n
n
t
Fn
 


 


(1.13)

This completes the proof.
Using (1.9), we get
Corollary 1: If
 
 
 
 
 

(3)
1111111
,, 0
1111
:: ;;: ;cc
; ;
,,
::;;: ;;;
ABBBCCC
jj jjjj
mr pmrpmmrp
jjj jjj
EGGG
mr pjjjjj
mr pmrrp pm
jjjj
abbb c
Fxyz
eggghhh
ab bccc
egggh
 
 
 



 




 

 

 

 
j
r pj
b
111
!! !
mrp
HHH
jj
mr p
jjj
x
yz
mr p
hh




(1.10)
Copyright © 2011 SciRes. APM
A. SHUKLA ET AL.
203

(3)
,1
::_;_;_:_;_; _;
,,
_:: 1;_;1:_;_;_;
fxyt
F








where ,,
111
x
yt xtyt
tt




t
then


 
,,,,
11
,!
n
n
n
fxy n
t
Fn

 

 

L
(2.2)
Here 3
F
is a function defined by (1.10).
Also, using (1.11) we have
Corollary 2:
If


0
11 11
,
fx 1!1 11
;;
11
1; 1;
m
m
mmm
xyt
yt mt
mm
x
ty
FF
tt
mm




 








 

,
t
(1)t
then,



,,,,
11
,!
n
n
n
fxyn
t
Fn

 

 

L
(2.3)
Theorem 2: If

,kl
f
xy xy,
ch that 0, 1 where and are
positive numbers suk1l

,2, ,kn
 or
(2.4)
(1.12) we can obtain (2.4).
orem 3:
If

then 0,1,2, ,1ln


,0fxy L
Using
The




11
1!
,1
kk k
k
kLyLxLx
fxyxy
 



an ,
k
Ly
d


,,
n

,,
F
fxy n

Lthen,
11
,!
n
n
Fn



(
Proof: Using (1.13) and (1.5), we have
2.5)
 
  

,
0
00
,
!
e,
1
n
k
xy mm
nmm
F
mL xLydd
x
yK xyxy




 

Further using (1.6), we arrived at
 
0
!
,1
k
nn
mm
m
Fmn

Using definition of , we get
mn


!
,1
n
n
n
F
n
U
sing defi n i tion of n
, we get (2.5).
3. References
[1] A. K. Shukla, I. A. Salehbhai and J. C. Prajapati, “On the
Laguerre Transform in Two Variables,” Integral Trans-
forms and Special Functions, V. 6, 2009, pp.
459-470. doi:10.1080/10652460802645818
ol. 20, No
[2] L. Debnath, “On Laguerre Transform,” Bu
cutta Mathematical Society, Vol. 55, 1960,
[3] rsity di Ferrara,
Sezione VII-ScienzeMathematiche, Vol. X, 1962, pp. 17-
19.
[4] L. Debnath, “Application of Laguerre Transform to the
Problem of Oscillations of a very Long and Heavy
Chain,” Annali dell Univ. di Ferrara, Sezione VII-Scien-
zeMathe-matiche, Vol. IX, No. 1, 1961, pp. 149-151.
Pinney Transformation,”
Aequationesmathematicae, Vol. 22, No. 1, 1981, pp. 73-
85. doi:10.1007/BF02190163
lletin of Cal-
pp. 69-77.
L. Debnath, “Application of Laguerre Transform to Heat
Conduction Problem,” Annali dell Unive
[5] H. J. Glaeske, “Die Laguerre-
[6] H. J. Glaeske, “On the Wiener-Laguerre Transforma-
ec Isity Zulia, Vol. 9, No. 1,
1986, pp. 27-34.
[7] L. Debnath and D. Bhatta, “Integral Transforms and
Their Applications,” Chapman & Hall, New York, 2007.
n omls of Two Vari-
of l Society, Vol.
83, 1991, pp. 253-262.
ava and H. L. Manocha, “A Treatise on
Generating Functions,” John Wiley and Sons, New York,
tion,” Riview T´ng Univer
[8] S. F. Ragab, “OLaguerre Polyn
ables,” Bulletin Calcutta Mathematica
ia
[9] H. M. Srivast
1984.
[10] A. Erdélyi, “Higher Transcendental Functions,” Vol. 2,
McGraw-Hill, New York, 1953.
E. D. Rainville, “Special Functions,” Mac[11] millan, New
York, 1960.
Copyright © 2011 SciRes. APM