R. Chaubey / Natural Science 3 (2011) 513-516

Copyright © 2011 SciRes. OPEN ACCESS

516

responds to a universe dominated by phantom dark en-

ergy.

REFERENCES

[1] Perlmutter, S., et al. (1999) Measurements of Ω and

from 42 high-redshift supernovae. The Astrophysical Jo-

urnal, 517, 565-586. doi:10.1086/307221

[2] Garnavich, P.M., et al. (1998) Constraints on cosmologi-

cal models from Hubble Space Telescope observations of

high-z supernovae. The Astrophysical Journal, 493 , L53.

doi:10.1086/311140

[3] Riess, A.G., et al. (1998) Observational evidence from

supernovae for an accelerating universe and cosmologi-

cal constant. The Astrophysical Journal, 116, 1009-1038.

doi:10.1086/300499

[4] Ratra, B. and Peebles, P.J.E. (1988) Cosmological con-

sequences of a rolling homogeneous scalar field. Physi-

cal Review D, 37, 3406-3427.

[5] Zlatev, I., Wang, L. and Steinhardt, P.J. (1999) Quintes-

sence, cosmic coincidence, and the cosmological con-

stant. Physics Review Letters, 82, 896-899.

doi:10.1103/PhysRevD.59.123504

[6] Kamenshchik, A.Y., Moschella, U. and Pasquier, V.

(2001) An alternative to quintessence. Physics Letters B,

511, 265-268. doi:10.1016/S0370-2693(01)00571-8

[7] Bazeia, D. and Jackiw, R. (1998) Nonlinear realization of

a dynamical poincare symmetry by a field-dependent

diffeomorphism. Annals of Physics, 270, 246-259.

doi:10.1103/PhysRevD.69.023506

[8] Billic, N., Tupper, G.B. and Viollier, R.D. (2002) Unifi-

cation of dark matter and dark energy: the inhomogene-

ous Chaplygin gas. Physics Letters B, 535, 17-21.

[9] Bordemann, M. and Hoppe, J. (1993) The dynamics of

relativistic membranes. Reduction to 2-dimensional fluid

dynamics. Physics Letters B, 317, 315-320.

doi:10.1023/A:1015266421750

[10] Bento, M.C., Bertolami, O. and Sen, A.A. (2003) WMAP

constraints on the generalized chaplygin gas model.

Physics Letters B, 575, 172-180.

doi:10.1103/PhysRevD.72.063511

[11] Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973)

Gravitation. W.H. freeman, New York.

[12] Misner, C.W. (1968) The isotropy of the universe. As-

trophysics Journal, 151, 431-457.

[13] Hu, B.L. and Parker, L. (1978) Anisotropy damping

through quantum effects in the early universe. Physics

Review D, 17, 933-945. doi:10.1103/PhysRevD.17.933

[14] Setare, M.R. (2007) Interacting generalized Chaplygin

gas model in non-flat universe. European Physical Jour-

nal, C52, 689-692. doi:10.1140/epjc/s10052-007-0405-5

[15] Chaubey, R. (2009) Role of modified Chaplygin gas in

Bianchi type—I universe. International Journal of Theo-

retical Physics, 48, 952-960.

[16] Singh, T. and Chaubey, R. (2009) Bianchi type-I, III, V,

VIo and Kantowski-Sachs models in scalar-tensor theo-

ries with dynamic cosmological constant. Astrophysics

and Space Science, 318, 231-236.

doi:10.1007/s10509-008-9917-1

[17] Singh, T. and Chaubey, R. (2008) Bianchi type-I universe

with wet dark fluid. Pramana—Journal of Physics, 71,

447-458.

[18] Singh, T. and Chaubey, R. (2009) Bianchi type-I, III, V,

VIo and Kantowski-Sachs universes in creation-field

cosmology. Astrophysics and Space Science, 321, 5-18.

doi:10.1007/s10509-009-9989-6

[19] Singh, T. and Chaubey, R. (2009) Bianchi type-III, V,

VIo and Kantowski-Sachs universes with varying , G

and 2 simultaneously. Proceedings of the National

Academy of Sciences, India Section A, 79, 337-354.

[20] Wang, B., Gong, Y. and Abdalla, E. (2005) Transition of

the dark energy equation of state in an interacting holo-

graphic dark energy model. Physics Letters, B624, 141-

146. doi:10.1016/j.physletb.2005.08.008