Journal of Applied Mathematics and Physics
Vol.04 No.01(2016), Article ID:62628,5 pages
10.4236/jamp.2016.41003
Efficient Generalized Inverse for Solving Simultaneous Linear Equations
S. Kadiam Bose1, D. T. Nguyen2
1Structural Technologies Strong Point LLC, Baltimore, MD, USA
2Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, USA



Received 22 November 2015; accepted 5 January 2016; published 12 January 2016
ABSTRACT
Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.
Keywords:
Generalized Inverse Algorithms, Simultaneous Linear Systems, Matrix Inverse, Singular Matrix, Pseudo Inverse, Cholesky Factorization

1. Introduction
In scientific computing, most computational time is spent on solving system of Simultaneous Linear Equations (SLE) which can be represented in matrix notations as
(1.1)
where
is a singular/non-singular matrix, and b is a given vector in
. For practical engineering/ science applications, matrix A can be either sparse (for most cases), or dense (for some cases). For a non-sin- gular coefficient matrix A, direct methods (Cholesky factorization,
algorithm,
decomposition, etc) or iterative methods (Conjugate Gradient algorithm, Bi-Conjugate Stabilization, GMRES, etc.) are used to solve Equation (1.1). If the coefficient matrix is singular or rectangular, the above mentioned direct and iterative methods cannot be used to solve Equation (1.1) and thus generalized inverse is needed to solve the unknown solution vector x in Equation (1.1).
The generalized (or pseudo) inverse of a matrix is an extension of the ordinary/regular square (non-singular) matrix inverse, which can be applied to any matrix (such as singular, rectangular etc.). The generalized inverse has numerous important engineering and sciences applications. Over the past decades, generalized inverses of matrices and its applications have been investigated by many researchers [1]-[6]. Generalized inverse is also known as “Moore-Penrose inverse” or “g-inverse” or “pseudo-inverse” etc.
In this paper we introduce an efficient (in terms of computational time and computer memory requirement) generalized inverse formulation to solve SLE with full or deficient rank of the coefficient matrix. The coefficient matrix can be singular/non-singular, symmetric/unsymmetric, or square/rectangular. Due to popular MATLAB software, which is widely accepted by researchers and educators worldwide, the developed code from this work is written in MATLAB language.
The rest of this paper is organized as follows. In Section 2, we discuss background of generalized inverse. In Section 3, we give a description of the algorithm. This section also describes the efficient generalized inverse formulation (which uses modified Cholesky factorization). In Section 4, we present comparison of numerical performances of the proposed algorithm with other existing algorithms. Extensive set of coefficient matrices (including rectangular, square, symmetrical, non-symmetrical, singular, non-singular matrices) obtained from well-established/popular websites [8] [9] were tested and the numerical performance in terms of timings, error norm were compared with other algorithms. Finally, conclusions are drawn in Section 5.
2. Singular Value Decomposition (SVD) and the Generalized Inverse
A general (square or rectangular) matrix
can be decomposed as
(2.1)
where
(2.2)

(2.3)
Let A be a singular matrix of size
and let k be the rank of the matrix. Based on Equation (2.1), one has


with
(2.4)
and 
Note: Eigen-values of
and Eigen-values of
are the same. However, the Eigen-vectors of 

Then, the generalized inverse 



where




3. Efficient Generalized Inverse Algorithms [1]-[3] [5] [6]
Moore-Penrose inverse can be computed using Singular Value Decomposition (SVD), Least Squares Method, QR factorizations, Finite Recursive Algorithm [2] [3], etc. In this work, our numerical algorithms have been based on:
(a) The “special Cholesky factorization” (for symmetrical/singular coefficient matrix), and
(b) The generalized inverse of a product of 2 matrices [6] and can be described in the following paragraphs.
The Moore-Penrose inverse (or generalized inverse or pseudo inverse) of a 



1. General condition:
2. Reflexive condition:
3. Normalized condition:
4. Reverse normalized condition:
Consider 











In Equation (3.1), matrices 

M is the upper triangular (special) Cholesky factorized matrix and contains exactly 



In this work, the upper triangular (special) Cholesky factorized matrix 
a) When the diagonal term of the current 
b) When the current 

Consider the generalized inverse of a matrix product [1] [6]

From Equation (3.3), if 

If 


Let us consider regular inverse in Equation (3.5) in place of generalized inverse

Using Equation (3.4),

From Equations (3.1)-(3.2) and Equation (3.6) one obtains,

Thus, Equation (3.7) becomes

While MATLAB solution can be obtained by 


4. Numerical Performance of ODU Generalized Inverse Solver
Based on the detailed algorithms explained in Section 3, the numerical performance of our proposed procedures are evaluated in this section. The known RHS vector 

We also compared the performance of our algorithm with the efficient algorithm described in [6] and also with MATLAB built-in function 
Table 1 and Table 2 records the times (in seconds) taken by our proposed algorithm, the algorithm mentioned in [6] and MATLAB built-in function [7]



Table 1. Computational times (in seconds) for symmetric rank-deficient test matrices with RHS Vector as linear combination of columns of coefficient matrix.
Table 2. Computational times (in seconds) for rectangular rank-deficient test matrices (Tall type: Rows >> Cols) with RHS Vector as linear combination of columns of coefficient matrix.
5. Conclusion
In this paper, various efficient algorithms for solving SLE with full rank, or rank deficient have been reviewed, proposed and tested. The developed numerical procedures can be applied to solve “general” SLE (in the form


Acknowledgements
The authors would like to acknowledge Gelareh Bakhtyar for her useful discussions.
Cite this paper
S. Kadiam Bose,D. T. Nguyen, (2016) Efficient Generalized Inverse for Solving Simultaneous Linear Equations. Journal of Applied Mathematics and Physics,04,16-20. doi: 10.4236/jamp.2016.41003
References
- 1. Nguyen, D.T. (2006) Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions. Springer Publisher.
- 2. Golub, G.H. and Loan, C.F.V. (1996) Matrix Computations. The John Hopkins University Press.
- 3. Heath, M.T. (1997) Scientific Computing: An Introductory Survey. McGraw Hill Publisher.
- 4. Hou, G. and Wang, Y. (2004) A Substructuring Technique for Design Modifications of Interface Conditions. Structural Dynamics & Materials Conference, Palm Springs, California, 19-22 April 2004. http://dx.doi.org/10.2514/6.2004-2010
- 5. Farhat, C. and Roux, F.X. (1994) Implicit Parallel Processing in Structural Mechanics. Computational Mechanics Advances, 2, Elsevier Publisher.
- 6. Pierre, C. (2005) Fast Computation of Moore-Penrose Inverse Matrices. Neural Information Processing—Letters and Reviews, 8.
- 7. MATLAB, MATLAB—The Language of Technical Computing.
- 8. Davis, T. University of South Florida Matrix Collection.
- 9. SJSU, SJSU—Singular Matrix Database.






