American Journal of Molecular Biology, 2011, 1, 114-121 AJMB
doi:10.4236/ajmb.2011.12012 Published Online July 2011 (http://www.SciRP.org/journal/ajmb/).
Published Online July 2011 in SciRes. http://www.scirp.org/journal/AJMB
An investigation of 10 Y-STR loci and the detection of specific
haplotype frequencies in Turkish population
Aydın Rüstemoglu1, Güvem Gümüs Akay2, Halil Gürhan Karabulut3, Ahmet Kadıkıran4,
Işık Bökesoy3
1Gaziosmanpaşa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey;
2Ankara University, Brain Studies Application and Research Center, Ankara, Turkey;
3Ankara University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey;
4Ankara University, Faculty of Science, Department of Molecular Biology, Ankara, Turkey.
E-mail: arustamov@gop.edu.tr
Received 26 May 2011; revised 16 June 2011; accepted 30 June 2011.
ABSTRACT
This study is to survey 10 Y-STR loci in 241 males
from Turkey.
In this study, the 241 healthy and unrelated males
living in different parts of Turkey for at least three
generations were included. Genomic DNAs were iso-
lated from peripheral blood samples by standard
phenol-chloroform extraction method. 10 Y-STR loci
including DYS19, DYS385a/b, DYS388, DYS389I/II,
DYS390, DYS391, DYS392, DYS393, and YCAIIa/b
were analyzed by using PCR and denaturing PAGE.
Allele frequencies, gene diversities and haplotype
frequencies were analyzed. Gene diversity per locus
varied from 0.5788 (DYS388) to 0.8903 (DYS385a/b).
The numbers of haplotypes in minHt recommended
by YCC and Ht10 have been 208 and 186, respec-
tively. When our minHt haplotypes frequencies com-
pared with the other seven populations, we have
found statistically significant differences between our
results and other populations (p < 0.01) except that
Czech population (p > 0.05). We suggest that an al-
ternative haplotype designated as aHt maybe alterna-
tive to minHt in respect of its Y-STR content with the
highest gene diversity value. The aHt haplotype has
found a higher discriminatory potential than minHt
haplotype with a better Pd combined value (0.9999936 vs
0.9999836) and has higher average gene diversity per
locus (0.7834 vs 0.7518) in Turkish population.
aHt haplotype can be proposed as an alternative to
minHt in paternity testing and forensic medicine ap-
plications involving Turkish male population. This
study has also provided additional information to the
framework of variation involving 10 Y-STR loci as
well as a further contribution to the Y-STR database
for Turkish male population.
Keywords: Y Chromosome; Y-STR; Polymorphism;
Haplotype; Turkey
1. INTRODUCTION
Human Y chromosome has been known to display com-
paratively low levels of polymorphisms in contrast with
autosomal chromosomes. Nonetheless, there are many
types of Y-chromosome specific polymorphisms identi-
fied in the non-recombining region of Y (NRY) includ-
ing RFLPs, Y Alu and microsatellite polymorphisms [1,
2]. Microsatellites or short tandem repeats (STRs) are
dispersed throughout the genome and are known to be
highly polymorphic; hence, each microsatellite locus
generally has many alleles due to variable number of
repeat units [3,4].
Allelic genotyping of STRs does not require the use of
complex molecular techniques, since amplifications and
visualization of PCR products make it easy. Y-chromo-
some specific STRs (Y-STRs) are chosen as more infor-
mative in paternity testing, forensic applications and
the study of population histories due to the haploid state
of Y chromosome which ensures both the transmittance
by the paternal lineages and the lack of recombination in
NRY, excluding pseudoautosomal regions (PARs) [5-
11].
Allelic and haplotypic distributions of Y-STRs have
shown significant differences in different geographical
regions, ethnical groups and communities [12-18]. There-
fore, allelic and haplotypic frequencies of Y-STRs
should be determined in a male population prior to any
interpretations of forensic analysis and paternity testing
[6,8-11,19]. In this study, allelic and haplotypic frequent-
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
11 5
cies involving 10 Y-STR loci: 8 Y-STR loci as recom-
mended by Y Chromosome Consortium (YCC) plus
DYS388 and YCAIIa/b-have been determined with such
a necessity in a representative group of Turkish popula-
tion in order to make comparisons with other popula-
tions.
2. MATERIALS AND METHODS
10 Y-STR loci were analyzed which included eight loci
recommended by YCC for minimal haplotype (minHt)-
DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391,
DYS392, and DYS393 [20,21] and the additional two:
DYS388 and YCAIIa/b.
Healthy and unrelated 241 males living in different
parts of Turkey for at least three generations were in-
cluded in this study. The written informed consents were
obtained from the study subjects and the study protocol
was approved by the ethics committee of Ankara Uni-
versity Medical Faculty.
Genomic DNAs were isolated from peripheral blood
samples by standard phenol-chloroform extraction me-
thod [22]. Four multiplex PCR analyses were carried out
with locus specific primers in a total volume of 25 µl
reaction mixture, containing; 50 - 150 ng genomic DNA,
10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, 0.1 - 0.8
µM of each primer, 200 µM of each dNTP (Sigma), 5
µg BSA and 1 unit Taq DNA polymerase (Invitrogen)
[23]. Y-STRs amplified in combination in multiplex
PCR are as follows: DYS389I, DYS389 II and DYS390
in multiplex I; DYS392 and DYS393 in multiplex II;
DYS19 and DYS388 in multiplex III; DYS385a/b and
DYS391 in multiplex IV; while YCAIIa/b loci were am-
plified separately. Cycling conditions were as follows:
32 cycles of 94˚C - 1 min, 54˚C - 1 min, 72˚C - 1 min
for multiplex I, II, IV and YCAIIa/b; 35 cycles of 94˚C -
1 min, 55˚C - 1 min, 72˚C - 60 min for multiplex III. An
initial denaturation at 94˚C - 2.5 min and a final exten-
sion at 72˚C - 10 min were performed before and after
each cycling reactions. Female DNA was used as a neg-
ative control in every run.
Amplified products were separated by 6% denaturing
polyacrylamide gel electrophoresis (PAGE) for 3 h at
1500 V. Visualization of PCR products was carried out
by a modification of the silver staining method of Santos,
et al. [23]. Gels were fixed for 15 min at room tempera-
ture in 10% (v/v) ethanol which were treated with 1%
(v/v) nitric acid for 3 min with agitation thereafter. Gels
were then rinsed in deionized water for 1 min and treated
with 0.2% (w/v) silver nitrate and 0.1% (v/v) formalde-
hyde solution for 25 min with agitation. Gels were rinsed
for a few seconds in deionized water, and developed in
an aqueous solution of 3% Na2CO3 (w/v), 100 µl/L 2%
(w/v) Na2S2O3 and 0.1% formaldehyde until the bands
were well visualized. Staining was ended with a fixative
solution.
Allelic genotyping were carried out by using the de-
fined DNA size markers (Fermentase, pUC Mix Marker,
8; ΦX174 RF DNA/BsuRI [HaeIII] Marker, 9) and self-
made ladders as standards.
Allele frequencies, gene diversities (H), haplotype
frequencies and genetic differentiation between popula-
tions were computed using Arlequin 3.1.1 software. Al-
lele frequencies were calculated by gene counting, while
H was computed for each locus according to the by for-
mula (1), where n is the number of samples, k is the
number of haplotypes, and pi is the frequency of i-th
haplotype [24].
2
1
1
1
k
i
n
H
p
n




(1)
The Combined Power of Discrimination (Pd combined)
for haplotypes was calculated using the by formula (2),
where Pdi is Power of Discrimination of i-th locus [25].

1
1π1
n
d combineddi
i
PP
 (2)
3. RESULTS AND DISCUSSION
10 Y-STRs have been analyzed for diversity in 241
healthy and unrelated male individuals from Turkey.
Observed allele or genotype frequencies of the 10
Y-STR loci have been given in Table 1. Variations in the
number of individuals for certain loci have been brought
about by some technical problems not anticipated.
Gene diversity values for each 10 Y-STR loci have
been given in Table 1. The lowest gene diversity (0.5788)
has been found in DYS388 locus, wherein the most fre-
quent allele has been allele 13 with a frequency of
62.08%. This result has been in accord with the data
reported by YCC [21]. The highest gene diversity
(0.8903) has been found in DYS385 locus, wherein the
most frequent allele has been allele 14 with a frequency
of 17.62% (Table 1).
The observed number of haplotypes and their fre-
quencies involving minHt and Ht10 haplotypes in this
current survey have been tabulated in Table 2. The
number of haplotypes detected for minHt is 208 and 186
for Ht10. Each haplotype belonging to Ht10 have been
found to be unique while the same holds for minHt with
the exception of H15 which has been detected in two
individuals. Gene diversity, average gene diversity per
locus and Combined Power of Discrimination (Pd combined)
values for Ht10 and minHt haplotypes have been given
in Table 3.
minHt haplotypes detected in this study group have
been compared with seven other populations: Croatian
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
116
Table 1. Detected allele frequencies and gene diversities of the Y-STR loci in Turkish population.
Allele DYS19
(n = 228)
DYS385*
(n = 454)
DYS388
(n = 234)
DYS389I
(n = 239)
DYS389II
(n = 234)
DYS390
(n = 241)
DYS391
(n = 224)
DYS392
(n = 237)
DYS393
(n = 241)
YCAII*
(n = 392)
7 0.0022
8 0.0176 0.0042
9 0.0330 0.0130 0.0042 0.0124
10 0.0969 0.1732 0.0633 0.0166
11 0.0903 0.0083 0.0167 0.5541 0.4262 0.0747
12 0.1189 0.0083 0.0628 0.2338 0.2321 0.3942
13 0.0342 0.1608 0.6208 0.2929 0.0260 0.1941 0.3361
14 0.2222 0.1762 0.0458 0.4059 0.0422 0.1162 0.0025
15 0.4145 0.1057 0.0958 0.1590 0.0295 0.0498 0.0
16 0.2863 0.0815 0.1542 0.0628 0.0042 0.0
16.3 0.0066
17 0.0385 0.0441 0.0542 0.0228
17.2 0.0022
17.3 0.0396
18 0.0043 0.0022 0.0083 0.0533
19 0.0132 0.0042 0.3173
20 0.0066 0.0041 0.1675
21 0.0022 0.0083 0.1066
22 0.0581 0.1878
23 0.2116 0.1193
24 0.3361 0.0203
25 0.2739 0.0
26 0.0085 0.0913 0.0025
27 0.0427 0.0166
28 0.1667
29 0.1838
30 0.2564
31 0.1453
32 0.1410
33 0.0556
H 0.6971 0.8903 0.5788 0.7191 0.8293 0.7583 0.6101 0.7232 0.7126 0.8087
*Allele frequencies was calculated including two genomic copies.
Table 2. Detected number of haplotypes and their frequencies in minHt and Ht10 haplotypes surveyed in Turkish population in this
study.
Ht10*
minHt**
Haplotypes
DYS19 DYS385a/b DYS389I DYS389II DYS390 DYS391 DYS392 DYS393N** YCAIIa/b DYS388N***
HPT1 15 11, 11 13 29 23 10 11 12 1 24/24 16 1
HPT2 15 10, 10 14 31 23 11 11 12 1 26/21 15 1
HPT3 15 13, 9 13 29 25 11 13 12 1 20/20 15 1
HPT4 15 13, 12 13 29 24 12 11 13 1 23/20 13 1
HPT5 15 13, 9 13 29 25 12 13 12 1 23/20 13 1
HPT6 15 15, 14 13 30 24 10 11 13 1 23/20 12 1
HPT7 15 15, 10 13 29 24 12 13 12 1 24/20 13 1
HPT8 14 13, 9 14 32 23 11 12 12 1 22/20 16 1
HPT9 15 12, 8 12 29 24 11 14 12 1 21/19 15 1
HPT10 15 12, 10 14 32 25 11 11 12 1 22/19 16 1
HPT11 15 14, 12 15 33 24 11 11 12 1 22/17 16 1
HPT12 16 15, 12 15 33 24 11 11 12 1 22/22 16 1
HPT13 15 17.3, 11 13 28 24 10 12 13 1 22/19 13 1
HPT14 15 17, 17 14 31 25 11 11 13 1 20/19 13 1
HPT15 14 14, 10 14 30 24 11 11 12 2 22/19 16 1
HPT16 16 17.3, 11 15 31 24 11 11 12 1 22/19 17 1
HPT17 14 17.3, 14 13 31 23 11 11 13 1 22/19 13 1
HPT18 16 13, 12 13 31 23 12 11 13 1 21/19 16 1
HPT19 16 13, 9 15 33 25 11 11 12 1 22/21 17 1
HPT20 15 14, 11 14 31 24 11 11 12 1 22/20 13 1
HPT21 15 12, 12 14 31 25 11 12 13 1 23/19 13 1
HPT22 14 13, 11 14 30 24 12 11 12 1 22/19 16 1
HPT23 16 16, 11 14 30 26 12 11 12 1 23/19 13 1
HPT24 13 17.3, 12 14 32 24 12 12 13 1 22/19 17 1
HPT25 14 16, 15 14 31 24 11 12 13 1 20/20 13 1
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
11 7
HPT26 14 17.3, 13 13 30 25 11 13 13 1 20/19 13 1
HPT27 15 17.3, 15 14 31 23 11 11 12 1 22/19 16 1
HPT28 15 14, 10 14 30 25 12 13 12 1 23/19 13 1
HPT29 14 14, 10 13 30 25 11 11 13 1 23/19 16 1
HPT30 15 16, 14 14 30 24 11 13 13 1 23/23 13 1
HPT31 15 15, 13 14 30 26 11 11 12 1 22/19 13 1
HPT32 16 14, 10 14 32 25 10 11 13 1 23/19 13 1
HPT33 15 21, 12 14 33 24 12 11 12 1 22/19 15 1
HPT34 15 14, 10 15 30 25 12 11 13 1 22/19 13 1
HPT35 15 17.3, 13 14 30 24 11 12 11 1 22/18 16 1
HPT36 14 16, 12 13 30 26 11 11 12 1 23/19 13 1
HPT37 15 11, 9 14 30 26 11 8 13 1 22/19 15 1
HPT38 16 14, 14 12 29 23 11 10 14 1 22/19 13 1
HPT39 15 17.2, 15 13 30 25 11 10 14 1 22/18 16 1
HPT40 16 14, 14 13 30 23 11 10 13 1 23/19 13 1
HPT41 15 14, 10 14 30 24 12 11 13 1 22/19 15 1
HPT42 15 20, 9 13 30 24 12 10 12 1 22/19 13 1
HPT43 15 19, 17 13 29 25 11 10 13 1 22/18 16 1
HPT44 15 15, 10 14 31 25 12 11 12 1 23/19 13 1
HPT45 15 16, 12 14 31 24 12 10 12 1 22/19 15 1
HPT46 15 9, 9 14 31 25 12 11 13 1 22/19 13 1
HPT47 15 16, 12 14 33 23 10 11 12 1 22/18 16 1
HPT48 16 11, 10 14 32 24 11 10 12 1 23/19 13 1
HPT49 15 13, 11 13 30 24 11 12 13 1 22/19 15 1
HPT50 13 14, 12 13 32 22 11 11 15 1 22/19 13 1
HPT51 14 15, 12 15 33 24 11 12 12 1 22/18 16 1
HPT52 14 17, 11 12 29 24 10 11 12 1 23/19 13 1
HPT53 14 15, 14 12 30 23 10 11 13 1 22/19 15 1
HPT54 14 17, 13 14 32 24 10 11 12 1 22/19 13 1
HPT55 14 17, 14 14 32 25 10 13 13 1 22/18 16 1
HPT56 14 17, 12 14 32 23 10 12 12 1 23/19 13 1
HPT57 16 12, 9 13 31 26 11 11 13 1 22/19 15 1
HPT58 14 10, 10 14 32 24 11 11 12 1 22/19 13 1
HPT59 14 14, 11 13 31 26 10 13 12 1 22/18 16 1
HPT60 15 17, 13 14 32 24 10 12 11 1 23/19 13 1
HPT61 16 14, 14 14 31 24 10 12 13 1 22/19 15 1
HPT62 14 13, 11 15 32 25 11 13 12 1 22/19 13 1
HPT63 15 15, 12 13 31 22 12 11 15 1 22/18 16 1
HPT64 15 19, 12 14 32 26 12 13 13 1 23/19 13 1
HPT65 16 13, 11 14 29 25 11 10 14 1 22/19 15 1
HPT66 14 14, 12 14 31 25 11 11 12 1 22/19 13 1
HPT67 15 14, 12 14 33 25 11 12 14 1 22/18 16 1
HPT68 14 13, 10 14 31 26 12 13 12 1 23/19 13 1
HPT69 13 15, 15 14 32 25 12 11 13 1 21/19 13 1
HPT70 14 16, 13 14 32 24 11 12 12 1 22/17 16 1
HPT71 14 19, 13 14 33 24 11 12 11 1 22/19 19 1
HPT72 16 14, 10 15 33 25 12 12 13 1 23/19 13 1
HPT73 15 16, 13 13 30 25 10 10 12 1 20/19 16 1
HPT74 14 13, 12 15 29 26 9 11 12 1 22/20 16 1
HPT75 14 14, 12 15 28 24 10 12 12 1 22/19 16 1
HPT76 16 14, 13 16 29 24 11 12 14 1 20/19 13 1
HPT77 15 14, 10 13 27 22 10 13 15 1 20/19 13 1
HPT78 15 15, 12 14 28 24 10 13 11 1 22/19 16 1
HPT79 14 13, 10 15 29 23 12 13 11 1 21/19 17 1
HPT80 13 14, 12 14 30 25 10 12 12 1 22/20 13 1
HPT81 15 14, 7 15 28 23 10 13 10 1 21/20 13 1
HPT82 15 11, 10 14 27 23 10 11 14 1 20/19 13 1
HPT83 13 15, 13 15 28 25 10 11 11 1 20/19 13 1
HPT84 14 12, 12 15 29 25 12 12 9 1 24/19 13 1
HPT85 14 15, 14 16 29 24 11 11 13 1 21/19 13 1
HPT86 14 14, 11 14 28 23 10 10 13 1 21/19 13 1
HPT87 15 16, 16 14 27 25 11 11 11 1 22/21 13 1
HPT88 13 17.3, 17 14 28 25 11 11 11 1 22/18 13 1
HPT89 16 14, 14 13 26 24 11 11 13 1 20/20 13 1
HPT90 16 13, 11 14 28 26 11 11 11 1 21/19 13 1
HPT91 15 14, 14 13 27 23 11 11 15 1 19/18 13 1
HPT92 13 17.3, 12 14 28 25 11 11 9 1 22/19 16 1
HPT93 15 15, 12 14 28 23 11 11 15 1 19/17 13 1
HPT94 14 15, 12 14 27 25 12 12 11 1 23/19 13 1
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
118
HPT95 14 12, 11 15 28 25 11 12 11 1 20/19 13 1
HPT96 15 14, 12 14 28 25 12 12 9 1 23/19 13 1
HPT97 16 14, 13 14 28 24 11 12 13 1 20/19 15 1
HPT98 17 15, 13 15 30 25 11 11 13 1 20/20 13 1
HPT99 14 17, 16 16 32 26 11 10 13 1 21/18 13 1
HPT100 15 14, 13 15 30 27 10 10 12 1 23/20 16 1
HPT101 16 16, 15 16 30 25 11 13 13 1 23/23 13 1
HPT102 16 16, 13 14 29 23 11 11 15 1 20/19 13 1
HPT103 16 15, 14 15 28 24 11 12 10 1 21/19 13 1
HPT104 15 14, 10 14 28 27 12 13 11 1 23/19 13 1
HPT105 15 17,13 15 29 25 11 12 10 1 22/19 16 1
HPT106 14 17, 15 14 29 23 10 11 11 1 20/18 13 1
HPT107 15 13, 12 15 29 26 11 13 10 1 23/19 13 1
HPT108 16 15, 13 14 28 22 11 13 15 1 20/19 13 1
HPT109 17 17.3, 17 16 31 23 11 12 15 1 21/19 13 1
HPT110 17 14, 13 14 28 23 12 11 14 1 20/19 13 1
HPT111 15 17.3, 14 16 30 25 11 12 12 1 22/19 14 1
HPT112 15 16, 15 14 28 24 11 12 13 1 21/19 15 1
HPT113 16 17.3, 13 15 29 24 11 13 12 1 22/19 16 1
HPT114 16 17, 11 15 29 25 11 11 12 1 22/19 16 1
HPT115 15 16, 15 16 30 26 10 12 14 1 22/19 13 1
HPT116 18 19, 13 16 29 25 11 11 13 1 21/19 13 1
HPT117 15 15, 14 15 28 25 12 12 12 1 22/19 13 1
HPT118 17 14, 10 16 31 27 11 11 13 1 23/19 13 1
HPT119 16 14, 10 15 29 25 13 12 13 1 22/19 13 1
HPT120 17 13, 13 14 29 25 10 11 13 1 23/22 14 1
HPT121 15 15, 13 15 29 24 11 11 12 1 22/19 16 1
HPT122 16 16, 13 14 28 23 10 11 14 1 20/20 13 1
HPT123 15 14, 10 16 30 24 12 12 11 1 22/19 13 1
HPT124 15 13, 12 14 28 24 11 13 13 1 19/14 13 1
HPT125 14 16, 10 13 29 23 11 11 13 1 22/19 13 1
HPT126 16 16.3, 13 14 29 23 11 11 13 1 22/19 16 1
HPT127 15 17.3, 13 14 28 24 11 11 12 1 22/19 16 1
HPT128 15 15, 13 14 29 24 12 11 12 1 22/22 18 1
HPT129 14 16.3, 14 14 29 23 13 13 13 1 19/19 13 1
HPT130 15 17.3, 17.3 14 29 24 12 11 12 1 22/21 15 1
HPT131 16 16.3, 11 14 28 24 12 11 12 1 22/19 15 1
HPT132 16 13, 10 13 29 24 11 11 14 1 20/20 13 1
HPT133 15 16, 10 13 28 23 11 9 13 1 20/20 15 1
HPT134 15 17.3, 15 15 32 24 11 12 13 1 20/20 13 1
HPT135 16 15, 10 14 29 26 10 12 14 1 23/19 14 1
HPT136 16 15, 13 14 28 24 11 13 15 1 20/19 14 1
HPT137 16 16, 15 14 28 23 11 11 12 1 23/20 13 1
HPT138 16 13, 12 14 27 24 10 11 12 1 19/18 17 1
HPT139 16 17, 13 13 28 25 11 11 12 1 20/19 13 1
HPT140 15 14, 11 16 29 26 12 12 12 1 23/22 13 1
HPT141 16 14, 13 15 30 23 11 11 14 1 20/19 13 1
HPT142 15 17, 16 16 30 24 11 11 13 1 22/21 13 1
HPT143 16 16, 13 16 31 24 10 11 13 1 22/19 13 1
HPT144 16 13,12 16 31 24 11 10 13 1 20/19 13 1
HPT145 16 17, 16 16 32 22 11 11 12 1 21/20 13 1
HPT146 16 14, 13 15 30 25 12 11 13 1 22/21 14 1
HPT147 16 14, 13 13 29 23 11 11 14 1 20/19 13 1
HPT148 16 11, 11 15 32 24 12 12 13 1 22/18 13 1
HPT149 15 14, 11 14 30 25 11 12 12 1 22/18 13 1
HPT150 15 17.3, 13 14 30 24 11 11 12 1 22/21 17 1
HPT151 15 14, 13 13 30 24 12 12 13 1 18/17 16 1
HPT152 16 14, 12 13 32 25 11 11 12 1 19/18 15 1
HPT153 15 14, 11 15 31 25 12 12 12 1 18/18 15 1
HPT154 15 15, 10 11 29 25 11 11 13 1 20/18 15 1
HPT155 16 16, 15 15 32 23 11 11 14 1 20/19 13 1
HPT156 16 16, 13 14 32 25 11 11 12 1 21/18 15 1
HPT157 16 14, 12 13 30 24 11 12 12 1 21/18 18 1
HPT158 14 15, 14 13 30 25 11 11 13 1 21/19 13 1
HPT159 16 13, 11 14 29 24 11 11 12 1 20/19 15 1
HPT160 15 16, 12 13 30 23 11 11 12 1 21/20 14 1
HPT161 14 15, 13 13 30 24 11 11 14 1 22/19 14 1
HPT162 14 14, 14 13 30 25 10 11 13 1 22/19 13 1
HPT163 14 15, 13 13 28 23 11 15 13 1 19/19 13 1
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
11 9
HPT164 16 14, 12 13 30 25 10 11 13 1 20/20 13 1
HPT165 17 13, 12 14 30 26 11 11 13 1 23/19 13 1
HPT166 14 16, 13 14 30 25 11 11 13 1 22/19 13 1
HPT167 16 15, 8 13 28 23 11 14 12 1 21/19 13 1
HPT168 17 13, 13 13 29 24 9 12 11 1 22/20 13 1
HPT169 15 13, 11 14 30 24 13 11 12 1 21/19 13 1
HPT170 15 16, 12 13 32 24 13 11 12 1 23/19 15 1
HPT171 17 11, 10 13 28 27 12 13 13 1 23/19 13 1
HPT172 16 13, 13 11 28 25 12 13 13 1 22/20 13 1
HPT173 15 15, 11 14 33 26 12 13 12 1 22/19 13 1
HPT174 16 14, 8 13 28 23 12 15 12 1 21/20 13 1
HPT175 14 15, 14 11 28 25 11 13 12 1 22/19 13 1
HPT176 13 14, 12 13 31 23 11 13 12 1 22/19 16 1
HPT177 14 13, 10 13 28 26 11 14 12 1 23/19 13 1
HPT178 15 20, 15 12 28 23 9 15 11 1 20/19 13 1
HPT179 16 15, 13 14 28 25 12 13 13 1 23/22 14 1
HPT180 14 20, 14 14 31 23 12 16 14 1 22/19 13 1
HPT181 16 19, 14 12 29 23 11 15 11 1 21/17 13 1
HPT182 15 12, 9 13 27 26 11 15 13 1 18/18 13 1
HPT183 16 14, 13 12 27 23 11 14 14 1 19/19 13 1
HPT184 15 15, 10 14 30 24 11 13 14 1 23/21 13 1
HPT185 16 10, 10 13 31 24 11 13 14 1 24/23 12 1
HPT186 16 14, 10 13 27 23 12 13 14 1 24/21 13 1
HPT187 15 12, 10 12 26 26 11 11 13 1
HPT188 16 12, 9 15 33 26 12 11 14 1
HPT189 14 12, 9 14 29 25 11 13 12 1
HPT190 15 15, 12 15 30 24 11 15 14 1
HPT191 16 13, 11 14 30 24 11 11 12 1
HPT192 14 12, 11 13 29 23 12 14 13 1
HPT193 16 12, 10 12 30 23 13 13 12 1
HPT194 15 13, 11 14 32 24 10 13 12 1
HPT195 14 14, 10 13 33 25 11 15 12 1
HPT196 15 17, 13 13 30 23 13 13 12 1
HPT197 14 15, 11 13 32 24 11 13 13 1
HPT198 15 16, 9 14 31 24 11 14 12 1
HPT199 15 14, 8 13 30 21 12 12 13 1
HPT200 16 16, 8 13 30 25 10 12 13 1
HPT201 16 16, 13 12 31 23 11 12 14 1
HPT202 15 14, 10 12 29 22 12 14 12 1
HPT203 16 14, 8 13 32 23 11 12 14 1
HPT204 16 14, 11 14 32 20 11 12 15 1
HPT205 17 11, 8 13 30 25 12 12 13
1
HPT206 14 19, 16 14 31 24 11 12 13 1
HPT207 15 14, 11 13 30 25 11 12 12 1
HPT208 14 17, 10 12 30 24 11 12 12 1
*Haplotype containing 10 Y-STR loci; **Haplotype containing 8 Y-STR loci; ***Number of individuals bearing each haplotype.
Table 3. Comparative presentation of haplotype numbers, gene
diversities, average gene diversities and Pd combined values be-
longing to three haplotypes surveyed in this study.
Haplotypes n Gene diversityAverage gene
diversity per locusPDc*
Ht10 186 1.0000 ± 0.00060.7476 0.9999989
MinHt 208 1.0000 ± 0.00050.7518 0.9999869
aHt 186 1.0000 ± 0.00060.7834 0.9999936
*Combined Power of Discrimination.
(n = 166) [26], Czech (n = 50) [27], German (n = 166),
Indian (n = 108), Mozambican (n = 112) [12], Japanese
(n = 161) [28], Turkish (Antalya) (n = 210) [29], and
Turkish (n = 280) [30]. Haplotypic comparisons have
highlighted that no significant difference has been ob-
served with Czech population (p > 0.05) while compari-
sons with all other populations have produced statisti-
cally significant differences from Turkish population in
this study (p < 0.01), as shown in Table 4.
Our results suggest that an alternative haplotype (aH t),
which differs slightly from minHt in respect of its Y-STR
loci contents, maybe alternative for minHt in Turkish
population. aHt has included the selected 8 Y-STR loci:
DYS19, DYS385a/b, DYS389I, DYS389II, DYS390,
DYS392, DYS393, and YCAIIa/b. The only difference
between the minHt and the proposed aHt is the inclusion
of YCAIIa/b locus in place of DYS391 locus in aHt due
to its higher gene diversity value of 0.8087 as compared
with 0.6101 of DYS391 locus (Table 1). We have found
186 unique haplotype in aHt (data not shown). The aHt
has reflected a better Pd combined value when compared
with minHt (0.9999936 vs 0.9999869) and, has higher
average gene diversity per locus (0.7834 vs 0.7518)
(Table 3). The data has exhibited that aHt has a higher
discriminatory potential than that of minHt.
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
120
Table 4. Exact test P values of populational genetic differentiation measures based on minHt haplotype frequencies between all pairs
involving samples of eight populations and Turkish population in this study.
Population Turkish
(This study)Croatian CzechGermanIndianMozambican Japanese Turkish Turkish
(Antalya)
Turkish (This study) -
Czech27 0.32474
±0.0283 -
Mozambican12 0.0000 0.00103
±0.0010 -
Croatian26 0.0000 0.0000 0.0000-
Indian12 0.0000 0.0000 0.00000.0000 -
Japanese28 0.00205
±0.0017
0.01176
±0.0026 0.00000.0000 0.0000-
German12 0.0000 0.0000 0.00000.0000 0.00000.0000 -
Turk ish30 0.0000 0.0000 0.00000.0000 0.00000.0000 0.0000 -
Turkish
(Antalya)29 0.0000 0.0000 0.00000.0000 0.00000.0000 0.0000 0.0000 -
In conclusion this study results have yielded sufficient
evidence that aHt can reliably be proposed as an alterna-
tive to minHt in paternity testing and forensic medicine
applications for Turkish population. Our data have also
provided additional information to the framework of
variation involving 10 Y-STR loci as well as a further
contribution to the Y-STR database for Turkish popula-
tion.
4. ACKNOWLEDGEMENTS
This study was supported by Ankara University Scientific Research
Projects with the project # 2005-08-09-012 HPD and approved by the
Ankara University, Research Ethics Committee of Medical Faculty
with the approval # 57-1393.
This study was performed in Ankara University, Medical Faculty,
Medical Biology Department.
REFERENCES
[1] de Knijff, P. (2000) Messages through bottlenecks: On
the combined use of slow and fast evolving polymorphic
markers on the human Y chromosome. The American
Journal of Human Genetics, 67, 1055-1061.
[2] Spurdle, A.B., Woodfield, D.G., Hammer, M.F. and
Jenkins, T. (1994) The genetic affinity of Polynesians:
Evidence from Y chromosome polymorphisms. Annals of
Human Genetics, 58, 251-263.
doi:10.1111/j.1469-1809.1994.tb01889.x
[3] Dupuy, B.M., Stenersen, M., Egeland, T. and Olaısen, B.
(2004) Y-chromosomal microsatellite mutation rates:
Differences in mutation rate between and within loci.
Hum Mut, 23, 117-124. doi:10.1002/humu.10294
[4] Gill, P., Brenner, C., Brinkmann, B., Budowle, B.,
Carracedo, A., Jobling, M.A., de Knijff, P., Kayser, M.,
Krawczak, M., Mayr, W.R., Morling, N., Olaisen, B.,
Pascali, V., Prinz, M., Roewer, L., Schneider, P.M.,
Sajantila, A. and Tyler-Smith, C. (2001) DNA Commi-
ssion of the International Society of Forensic Genetics:
Recommendations on forensic analysis using Y-chromo-
some STRs. Forensic Science International, 124, 5-10.
doi:10.1016/S0379-0738(01)00498-4
[5] Betz, A., Bäbler, G., Dietl, G., Syeil, X., Weyermann, G.
and Pflug, W. (2001) DYS STR analysis with epithelial
cells in a rape case. Forensic Science International, 118,
126-130. doi:10.1016/S0379-0738(00)00482-5
[6] Corach, D., Figueira, R.L., Marino, M., Penacino, G. and
Sala, A. (2001) Routine Y-STR typing in forensic case-
work. Forensic Science International, 118, 131-135.
doi:10.1016/S0379-0738(00)00483-7
[7] Dekairelle, A.F. and Hoste, B. (2001) Application of a
Y-STR-pentaplex PCR (DYS19, DYS389I and II,
DYS390 and DYS393) to sexual assault cases. Forensic
Science International, 118, 122-125.
doi:10.1016/S0379-0738(00)00481-3
[8] Gill, P., Werrett, D.J., Budowle, B. and Guerrieri, R.
(2004) An assessment of whether SNPs will replace
STRs in national DNA databases—joint considerations
of the DNA working group of the European Network of
Forensic Science Institutes (ENFSI) and the Scientific
Working Group on DNA Analysis Methods (SWGDAM).
Science & Justice, 44, 51-3.
doi:10.1016/S1355-0306(04)71685-8
[9] Honda, K., Tun, Z., Young, D. and Terao, T. (2001)
Examination of Y-STR mutations in sex chromosomal
abnormality in forensic case. Forensic Science Interna-
tional, 118, 136-140.
doi:10.1016/S0379-0738(00)00484-9
[10] Jobling, M.A., Pandya, A. and Tyler-Smith, C. (1997)
The Y chromosome in forensic analysis and paternity
testing. International Journal of Legal Medicine, 110,
118-124. doi:10.1007/s004140050050
[11] Kayser, M. and Sajantila, A. (2001) Mutations at Y-STR
loci: Implications for paternity testing and forensic analy-
sis. Forensic Science International, 118, 116-121.
doi:10.1016/S0379-0738(00)00480-1
[12] Alaves, C., Gusmao, L., Barbosa, J. and Amorim, A.
(2003) Evaluating the informative power of Y-STRs: A
comparative study using European and new African
haplotype data. Forensic Science International, 134, 126-
133. doi:10.1016/S0379-0738(03)00127-0
[13] Gusmao, L., Sanchez-Diz, P., Alves, C., Beleza, S.,
Lopes, A., Carracedo, A. and Amorim, A. (2003) Group-
ing of Y-STR haplotypes discloses European geografic
clines. Forensic Science International, 134, 172-179.
doi:10.1016/S0379-0738(03)00160-9
[14] Koyama, H., Iwasa, M., Maeno, Y., Tsuchimochi, T.,
A. Rüstemoglu et al. / American Journal of Molecular Biology 1 (2011) 114-121
Copyright © 2011 SciRes. AJMB
121
Isobe, I., Yoshimi, S.N., Jun, M.O., Matsumoto, T., Horii,
T. and Nagao, M. (2001) Y-chromosomal STR haplotype
in the Japanese population. Forensic Science Interna-
tional, 124, 221-223.
doi:10.1016/S0379-0738(01)00572-2
[15] Nakagome, Y., Young, S.R., Akane, A., Numabe, H., Jin,
D.K., Yamori, Y., Seki, S., Tamura, T., Nagafuchi, S.,
Shiono, H. and Nakahori, Y. (1992) A Y-associated alele
may be characteristic of cetain ethnic groups in Asia.
Annals of Human Genetics, 56, 311-314.
doi:10.1111/j.1469-1809.1992.tb01158.x
[16] Rodig, H., Grum, M. and Grimmecke, H.-D. (2007)
Population study and evaluation of 20 Y-chromosome
STR loci in Germans. International Journal of Legal
Medicine, 121, 24-27. doi:10.1007/s00414-005-0075-5
[17] Rustamov, A., Gümüş, G., Karabulut, H.G., Elhan, A.H.,
Kadıkıran, A. and Bökesoy, I. (2004) Y-STR polymor-
phism in Central Anatolian region of Turkey. Forensic
Science International, 139, 227-230.
doi:10.1016/j.forsciint.2003.11.009
[18] Yan, J., Tang, H., Liu, Y., Jing, Y., Jiao, Z., Zhang, Q.,
Gao, J., Shang, L., Guo, H. and Yu, J. (2007) Genetic
polymorphisms of 17 Y-STRs haplotypes in Chinese Han
population residing in Shandong province of China.
Legal Medicine, 9, 196-202.
doi:10.1016/j.legalmed.2006.11.016
[19] Park, M.J., Lee, H.Y, Chung, U., Kang, S.-C. and Shin,
K.-J. (2007) Y-STR analysis of degraded DNA using
reduced-size amplicons. International Journal of Legal
Medicine, 121, 152-157.
doi:10.1007/s00414-006-0133-7
[20] Willuweit, S. and Roewer, L. (2007) Y chromosome
haplotype reference database (YHRD): Update. Forensic
Science International, 1, 83-87.
doi:10.1016/j.fsigen.2007.01.017
[21] YHRD-Y Chromosome Haplotype Reference Database.
(2011).
http://www.yhrd.org
[22] Sambrook, J. and Russell, D. (2001) Molecular Cloning:
A Laboratory Manual. 3rd Edition, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York, 543-554.
[23] Santos, F.R., Pena, D.J. and Epplen, J.T. (1993) Genetic
and population study of a Y-linked tetranucleotide repeat
DNA polymorphism with a simple non-isotopic techni-
que. Human Genetics, 90, 655-656.
doi:10.1007/BF00202486
[24] Nei, M. (1996) Phylogenetic analysis in molecular evolu-
tionary genetics. Annual Review of Genetics, 30, 371-403
doi:10.1146/annurev.genet.30.1.371
[25] Kimberly, A.H. (2001) Statistical analyses of STR data
profiles in DNA.
http://promega.de/profiles/103/Profile-sinDNA_103_14.
pdf.
[26] Ljubkovic, J., Stripisic, A., Sutlovic, D., Definis-Goja-
novic, M., Bucan, K. and Andelinovic, S. (2008) Y-chro-
mosomal short tandem repeat haplotypes in southern
croatian male population defined by 17 loci. Croatian
Medical Journal, 49, 201-206.
doi:10.3325/cmj.2008.2.201
[27] Ehler, E., Marvan, R. and Vanek, D. (2010) Evaluation
of 14 Y chromosomal short tandem repeat haplotype
with focus on DYS449, DYS456, and DYS458: Czech
population sample. Croatian Medical Journal, 51, 54-60.
doi:10.3325/cmj.2010.51.54
[28] Hara, M., Kido, A., Takada, A., Adachi, N. and Saito, K.
(2007) Genetic data for 16 Y-chromosomal STR loci in
Japanese. Legal Medicine, 9, 161-170.
doi:10.1016/j.legalmed.2006.11.002
[29] Demirçin, S. and Timur, S. (2010) Haplotype analysis of
8 Y-STR loci in the Antalya population. Romanian
Journal of Legal Medicine, 18, 51-58.
[30] Henke, J., Henke, L., Chatthopadhyay, P., Kayser, M.,
Dulmer, M., Cleef, S., Poche, H. and Felske, Z.H. (2001)
Application of Y-chromosomal STR haplotypes to
forensic genetics. Croatian Medical Journal, 42, 292-
297.