Synthesis and Characterization of La0.75Sr0.25Cr0.5Mn0.5O3-δ Nanoparticles
Using a combustion M ethod for Solid Oxide Fuel Cells
Copyright © 2011 SciRes. NJGC
riers by combustion method as examined with scanning
electron microscopy are show n in Fig ure 4. NTP-assisted
LSCM shows many nanosized particles of sphe ricalshape
in the range 100 - 500 nm (Figure 4(a)). The LSCM
powders synthesized using oxalic acid and citric acid as
carriers consist of uniform nanoparticles shwoing less
agglomeration. The average particle size of the
La0.75Sr0. 25Cr0.5Mn0.5O3-δ perovskite powders calcinated
at 1200˚C is about 50 - 500 nm (Figures 4(a) and (b)).
The small size La0.75Sr0.25Cr0.5Mn0.5O3-δ perovskite nano-
particles are very active, small size is also beneficial for
decreasing the fabrication temperature of the anode film
and enhancing the catalytic proper ties.
4. Conclusions
La0.75Sr0. 25Cr0.5Mn0.5O3-δ (LSCM) perovskite phase na-
noparticles were successfully synthesized by solution
combustion method using different carriers (NTP, oxalic
acid, and citric acid) after calcination of fired gel at
1200˚C for 7 h. Scanning electron microscopy of the
as-synthesized powders showed spherical particle shapes
and sizes in the range of 50 - 500 nm. An exothermic
reaction between carriers and nitrates initiates the com-
bustion process. TGA and DSC analysis confirmed the
decomposition process of nitrates and the organic matter.
The combustion reactions took place in the temperature
range 200 ˚C to 400˚C.
5. Acknowledgements
One of the authors (V S Reddy Channu) thanks the Al-
exander von Humboldt Foundation for a fellowship.
REFERENCES
[1] Ch. Sun and U. Stimming, “Recent Anode Advances in
Solid Oxide Fuel Cells,” Journal of Power Sources, Vol.
171, No. 2, 2007, pp. 247-260.
doi:10.1016/j.jpowsour.2007.06.086
[2] E. Lay, G. Gauthier, S. Rosini, C. Savaniu and J. T. S.
Irvine, “Ce-Substituted LSCM as New Anode Material
for SOFC Operati ngin Dry Methane,” Solid State Ionics,
Vol. 179, No. 2, 2008, pp.1562-1566.
doi:10.1016/j.ssi.2007.12.072
[3] S. Zha, P. Tsang, Z. Cheng and M. Liu, “Electr ical Prop-
erties and Sulfur Tolerance of La0.75Sr0.25Cr1−xMnxO3
under Anodic Conditions,” Journal of Solid State Chemi-
stry, Vol. 178, No. 6, 2005, pp. 1844-1850.
doi:10.1016/j.jssc.2005.03.027
[4] S . Tao and J. T. S . Irvine, “Synthesis and Characterization
of (La0.75Sr0.25)Cr0.5Mn 0.5O3—A Redox-Stable, Efficient
Perovskite Anode for SOFCs,” Journal of the Electro-
chemica l Society, Vol . 151, No. 2, 2004, pp. A252-A259.
doi:10.1149/1.1639161
[5] S. TaO and J. T. S. Irvine, “A Redox-Stable, Efficient
Anode for Solid-Oxide Fuel Cells,” Nature Materials,
Vol. 2, No. 5, 2003, pp. 320-323.
doi:10.1038/nmat871
[6] J. C. Ruiz-Mo rales , J. C anal es-Vazq uez, J. P en a-Martinez,
D. M. Lopez and P. Nun ez, “On the Simultaneous Use of
La0.75Sr0.25Cr0.5Mn 0.5O3−δ as Both Anode and Cathode
Material with Improved Microstructure in Solid Oxide
Fuel Cells,” Electrochim. Acta, Vol. 52, No. 1, 2006, pp.
278-284. doi:10.1016/j.electacta.2006.05.006
[7] D. M. Bas tid as, S . Tao and J. T. S. Irvine, “A Symmetric-
al Solid Oxide Fuel Cell Demonstrating Redox Stable
Perovskite Electrodes,” Journal of Materials Chemistry,
Vol. 16, No. 17, 2006, pp. 1603-1605.
doi:10.1039/b600532b
[8] J. Wan, J. H. Zhu and J. B. Goodenough, “La0.75Sr0.25
Cr0.5Mn0.5O3−δ + Cu composite anode running on H2 and
CH4 fuel s,” Solid State Ionics, Vol. 177, No. 13 -14, 2006,
pp. 1211-1217. doi:10.1039/b600532b
[9] X. C. Lu and J. H. Zhu, “Cu(Pd)-Impregnated La0.75Sr0.25
Cr0.5Mn0.5O3−δ Anodes for Direct Utilization of Methane
in SOFC,” Solid State Ionics, V ol. 178, No. 25-26, 2007,
pp. 1467-1475. doi:10.1016/j.ssi.2007.09.001
[10] B. Huang, S. R. Wang, R. Z. Liu , X . F. Ye, H. W. Nie, X.
F. Sun and T. L. Wen, “Performance of La0.75Sr0.25Cr0.5
Mn0.5O3−δ Perovskite-Structure Anode material at Lan-
thanum Gallate Electrolyte for IT-SOFC Running on
Ethanol Fuel,” Journal of Power Sources, Vol. 167, No. 1,
2007, pp . 39-46. doi:10.1016/j.jpowsour.2007.02.022
[11] S. P. Jiang, X. J. Chen, S. H. Chan and J. T. Kwok,
“GDC-Impregnated (La0.75Sr0.25)(Cr0.5Mn0.5)O3 Anodes
for Direct Utilization of Methane in Solid Oxide Fuel
Cells,” Journal of Electrochemical Society, Vol. 153, No.
5, 2006, pp. A850-A856. doi:10.1149/1.2179347
[12] J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales,
B. E. Buergler, P. Nunez and L. J. Gauckler, “Fuel Cell
Studies of Perovskite-Type Materials for IT-SOFC,”
Journal of Power Sources, Vol. 159, No. 2, 2006, pp.
914-921. doi:10.1016/j.jpowsour.2005.11.036
[13] S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A.
Khor, “(La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ Composite
Anodes for Methane Oxidation Reaction in Solid Oxide
Fuel Cells,” Solid State Ionics, Vol. 177, No. 1-2, 2006,
pp. 149-157. doi:10.1016/j.ssi.2005.09.010
[14] J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales,
C. Savaniu, P. Nunez and J. T. S.Irvine, “Anodic Perfor-
mance and In termediat e Temper ature Fuel Cell Testing of
La0.75Sr0.25Cr0.5Mn0.5O3-δ at Lanthanum Gallate Electro-
lytes,” Chemistry of Materials, Vol. 18, 2006, pp.
1001-1006.
[15] J. C. Ruiz-Morales, J. Canales-Vazquez, B. Balleste-
ros-Perez, J. Pena-Martinez, D. Marrero-Lopez, J. T. S.
Irvine and P. Nunez, “LSCM–(YS Z–CGO) Composites
as Improved Symmetrical Elect r odes for Solid Oxide Fuel
Cells,” Journal of the European Cera mic S oci ety, Vol. 27,
No. 13-15, 20 07 , p p. 42 23-4227.
doi:10.1016/j.jeurceramsoc.2007.02.117
[16] S. P. Jiang, L. Zhang and Y. Zhang, “Lanthanum Stron-