S. MUKHERJEE ET AL.

Copyright © 2011 SciRes. JMP

563

ics A, Vol. 40, No. 18, 2004, pp. 4717-4727.

doi:10.1088/1751-8113/40/18/003

[2] P. Painleve, “Sur les Equations Différentielles du Second

Ordre et d’Ordre Supérieure Dont L’Intégrale Générale

est Uniforme,”Acta Mathematica, Vol. 25, No. 1, 1902,

pp. 1-85.

[3] E. L. Ince, “Ordinary Differential Equations,” Dover,

New York, 1956.

[4] H. T. Davis, “Introduction to Nonlinear Differential and

Integral Equations,” Dover, New York, 1962.

[5] E. Kamke, “Differential Gleichungen Losungsmethoden

und

Losungen,” Teubner, Stuggart, 1983.

y, “Ordinary Differential Equations and

Nostrand, New York, 1960.

d A. K.

First-Order

ol. 20, No. 16, 1987,

[6] G. M. Murph

Their Solutions,” Van

[7] V. V. Golubev, “Lectures on Analytical Theory of Dif-

ferential Equations,” Gostekhizdat, Moscow, 1950.

[8] J.S. R.Chisholm an Common, “A Class Of Sec-

ond-Order Differential Equations and Related

Systems,” Journal of Physics A, V

pp. 5459-5472. doi:10.1088/0305-4470/20/16/020

[9] I. C. Moreira, “Lie Symmetries for the Reduced Three-

Wave,” Hadronic Journal, Vol. 7, 1984, p. 475.

[10] P. G. L. Leach, “First Integrals for the Modified Emden

Equation

0

n

qtqq

,” Journal of Physics, Vol.

26, No. 10, 1985, p. 2510.

Significan

[11] S. Chandrasekhar, “An Introduction to the Study of Stel-

lar Structure,” Dover, New York, 1957.

[12] J. M. Dixon and J. A. Tuszynski, “Solutions of a Gener-

alized Emden Equation and Their Physicalce,”

Physical Review A, Vol. 41, No. 8, 1990, pp. 4166-4173.

doi:10.1103/PhysRevA.41.4166

[13] G. C. McVittie, “The Mass-Particle in an Expanding Uni-

verse,” Monthly Notices of the Royal Astronomical Soci-

ebra SL

1989,

arte and I. C. Moreira, “One

p. L701.

ety, Vol. 93, 1933, pp. 325-339.

[14] V. J. Erwin, W. F.Ames and E.Adams, “Wave Phe-

nomenon: Modern Theory and Applications,” In: C.

Rogers and J. B. Moodie, Eds., Wave Phenomenon: Modern

Theory and Applications, North-Holland, Amsterdam, 1984.

[15] F. M. Mahomed and P. G. L. Leach, “The Lie Alg

(3,R) and Linearization,” Quaestiones Mathematicae, Vol.

12, No. 2,pp.121-139.

[16] L. G. S.Duarte, S. E. S.Du

Dimensional Equations with the Maximum Number of

Symmetry Generators,” Journal of Physics A: Mathe-

matical General, Vol. 20, No. 11, 1987,

doi:10.1088/0305-4470/20/11/005

[17] S. E. Bouquet, M. R. Feix and P. G. L. Leach, “Properties

of Second Order Ordinary Differential Equations Invari-

ant under Time Translation and Self Similar Transforma-

tion,” Journal of Mathematical Physics, Vol. 32, No. 6,

1991, pp.1480-1490. doi:10.1063/1.529306

[18] W. Sarlet, F. M. Mahomed and P. G. L. Leach, “Symme-

tries of Nonlinear Differential Equations and Lineariza-

tion,” Journal of Physics A: Mathematical General, Vol.

20, No. 2, 1987, pp.277-292.

doi:10.1088/0305-4470/20/2/014

[19] P. G. L. Leach, M. R. Feix and S. Bouquet, “Analysis and

Solution of a Nonlinear Second-Order Equation through

Rescaling and through a Dynamical Point of View,”

”

al General, Vol. 26,

Journal of Mathematical Physics, Vol. 29, No. 12, 1988,

pp. 2563-2569.

[20] R. L. Lemmer and P. G. L. Leach, “The Painlev´e Test,

Hidden Symmetries and the Equationyyyky

Journal of Physics A: Mathematic

30,

1993. pp. 5017-5024.

doi:10.1088/0305-4470/26/19/030

[21] W.H. Steeb, “Invertible Point Transformations and Non-

linear Differential Equations” World Scientific, London,

1993.

[22] M. R. Feix, C. Geronimi, L. Cairo, P.G.L. Leach, R.L.

Lemmer and S. Bouquet, “On the Singularity Analysis of

Ordinary Differential Equation Invariant under Time

Translation and Rescaling,” Journ

matical General, Vol. 30, 1997, pp

al of Physics A: Mathe-

. 7437-7461.

doi:10.1088/0305-4470/30/21/017

[23] N. H. Ibragimov, “Elementary Lie Group Analysis and

Ordinary Differential Equations,” John Wiley & Sons,

New York, 1999.

[24] P. G. L. Leach, S. Cotsakis and G. P. Flessas, “Symme-

tries, Singularities and Integrability in Complex Dynam-

ics II: Rescalings and Time-Translatio Systems,”

Journal of Mathematical Analysis and Applications, Vol.

251, 2000, pp. 587-608

ns in 2D

. doi:10.1006/jmaa.2000.7033

lan and M. Lakshma-

ns,” Proceedings of the Royal Society, Vol. 461,

[25] V. K. Chandrasekar, M. Senthilve

nan, “On the Complete Integrability and Linearization of

Certain Second Order Nonlinear Ordinary Differential

Equatio

No. 2060, 2005, p. 2451. doi:10.1098/rspa.2005.1465

[26] V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan and

M. Lakshmanan, “A Simple and Unified Approach to

Identify Integrable Nonlinear Oscillators and Systems,”

Journal of Mathematical Physics, Vol. 47, No.

p.023508.

2, 2006,

[27] J. K. Zhou, “Differential Transformation and Its Applica-

tion in Electrical Circuits,” Huazhong University Press,

Wuhan, 1986.

[28] S. Mukherjee, B. Roy and S. Dutta, “Solution of Duffing-

Van der Pol Oscillator Equation by a Differential Trans-

form Method,” Physica Scripta , Vol. 83, No. 1, 2010,

Article ID 015006. doi:10.1088/0031-8949/83/01/015006

[29] V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan

“New Aspects of Integrability of Force- Free Duffing-

Van der Pol Oscillator and Related Nonlinear System,”

Journal of Physics A, Vol. 37, No. 16, 2004, p. 4527.

,

doi:10.1088/0305-4470/37/16/004

[30] M. Euler, N. Euler and P. G. L. Leach, “The Riccati and

Ermakov-Pinney Hierarchies,” Report No. 8, Institut

Mittag-Leffler, Sweden, 2005/2006.

[31] M. Abramowitz and I. A. Stegun, “Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathe-

matical Tables,” Dover, New York, 1972.