
K. S. JAIN ET AL.51
226 (M+). Anal. Calcd. for C11H10N6: C, 58.40; H, 4.46;
N, 37.15; found C, 58.76; H, 4.76; N, 37.43.
2,4-Diamino-5-cyano-6-(4-morpholinyl)pyrimidine
3b
1HNMR (400 MHz, DMSO-d6): δ 3.54 - 3.76(4H, m,
-NH(CH2-)2); 3.84-4.12 (4H, m, O-(CH2-)2]; 6.51(2H, s,
NH2 at 4); 6.69(2H, s, NH2 at 2). IR (KBr) cm–1: 3466,
3358[
NH], 2216[
CN]. m/z 220(M+). Anal. Calcd. for
C9H12N6O: C, 49.08; H, 5.49; N, 38.16; found C, 49.32;
H, 5.68; N, 38.29.
2,4-Diamino-5-cyano-6-[(4-methoxyphenyl)amino]p
yrimidine 3c
1HNMR (400 MHz, DMSO-d6): δ 3.73(3H, s, OCH3);
4.0 - 4.31(4H, s, NH2 at 2 and 4); 6.85 - 7.33 (4H, m,
Ar-H). IR (KBr) cm–1: 3416, 3374 [
NH], 2208 [
CN]. m/z
256(M+). Anal. Calcd. for C12H12N6O: C, 56.24; H, 4.72;
N, 32.79; found C, 56.35; H, 4.45; N, 32.93.
2,4-diamino-5cyano-6-[(4-methylphenyl)amino]pyri
midine 3d
1HNMR (400 MHz, DMSO-d6): δ 3.4(3H, s, ArCH3 at
6); 6.6(4H, m, NH2 at 2 and 4); 8.4(4H, m, ArH at 6). IR
(KBr) cm–1: 3474, 3289, 3153[
NH], 2188[
CN]. m/z
240(M+). Anal. Calcd. for C12H12N6: C, 59.99; H, 5.03;
N, 34.98 ; found C, 59.84; H, 5.34; N, 34.87.
2,4-diamino-5-cyano-6-[(4-chlorophenyl)amino]pyr
imidine 3g
1HNMR (400 MHz, DMSO-d6): δ 3.4(3H, s, ArCH3 at
6); 6.6(4H, m, NH2 at 2 and 4); 8.4(1H, s, ArH at 6). IR
(KBr) cm–1: 3324, 3178[
NH], 2190[
CN]. m/z 260(M+).
Anal. Calcd. for C11H9N6Cl: C, 50.68; H, 3.48; N, 32.24;
found C, 50.43; H, 3.62; N, 32.26.
2-amino-4-hydroxy-5-cyano-6-(4-morpholinyl)pyri
midine 4b
1HNMR (400 MHz, DMSO-d6): δ 2.9[s, -N(CH2-)2];
3.8[s, O-(CH2-)2]; 6 (2H, s, NH2 at 2); 7.4( s, 1H, OH at
4). IR (KBr) cm–1: 3357, 3115[
NH], 2922[
C-H], 2182[
CN],
1628[
CONH]. m/z 221(M+). Anal. Calcd. for C9H11N5O2: C,
48.86; H, 5.01; N, 31.66; found C, 48.74; H, 5.44; N,
31.34.
2-amino-4-hydroxy-5-cyano-6-[(4-flurophenyl)ami
no]pyrimidine 4f
1HNMR (400 MHz, DMSO-d6): δ 4.2(2H, s, NH2 at 4);
5.07(1H, s, OH); 6.72(5H,m, Ar-H ). IR (KBr) cm–1: 3476,
3296[
NH], 2916.12[
C-H], 2211[
CN] 1654, 1618[
CONH]. m/z
245(M+). Anal. Calcd. for C11H8N5OF: C, 53.88; H, 3.29;
N, 28.56; found C, 53.73; H, 3.08; N, 28.32.
4. Conclusions
We have described a new, rapid and a versatile approach
by MAOS for the synthesis of 2-amino-5-cyano-4,6-
disubstitutedpyrimidines in a highly efficient way. Fur-
ther work is in progress with respect to diversity oriented
synthesis of mononuclear pyrimidines and their biologi-
cal screening.
5. Acknowledgements
The authors acknowledge the contributions of Prof. M. N.
Navale, President, & Dr. (Mrs.) S. M. Navale, Secretary,
Sinhgad Technical Education Society, Pune for provid-
ing facilities to carry out the synthetic work and basic
spectroscopic analysis. The Mass and NMR were done at
Department of Chemistry, Saurashtra University, Rajkot,
India and University of Pune, India, respectively.
6. References
[1] K. S. Jain, T. S. Chitre, P. B. Miniyar, M. K. Kathiravan,
V. Bendre, V. Veer, S. Shahane and C. Shishoo, “Bio-
logical and Medical Significance of Pyrimidines,” Cur-
rent Science, Vol. 90, 2006, pp. 793-799.
[2] R. Butler, “The Structure, Reactions, Synthesis, and Uses
of Heterocyclic Compounds,” In: A. Katritzky and C.
Rees, Ed., Comprehensive Heterocyclic Chemistry, Per-
gamon Press, Oxford, Vol. 5, 1984, pp. 796-798.
[3] D. Brown, “Pyrimidines and Their Benzo Derivatives,” In:
A. Katritzky and C. Rees, Ed., Comprehensive Heterocyc-
lic Chemistry, Pergamon Press, Oxford, Vol. 2, 1984, pp.
57-61. doi:10.1016/B978-008096519-2.00035-7
[4] R. J. Vishnu, V. Berge and A. Dirk, “Synthesis of
Pyrimidines and Fused Pyrimidines as Leishmanicides
and Herbicides,” Advanced Synthesis and Catalysis, Vol.
331, No. 6, 1989, pp. 893-905.
doi:10.1002/prac.19893310603
[5] H. Kristison and O. Kristinson, “Substituted Pyrimidi-
nes,” Chemical Abstract, 1988, Vol. 108, Article ID:
186761.
[6] B. Detlef, G. Wagner and Z. Chem, Vol. 25, 1985, p. 141.
[7] E. Kniner, F. Eberhard and K. Regina, Chemical Abstract,
Vol. 98, 1983, Article ID: 215609.
[8] J. Bagli, “Amino-Pyrimidine Derivatives,” Chemical
Abstract, Vol. 103, 1985, Article ID: 6358.
[9] M. Perez, J. Soto, “Synthesis of 6-Alkoxy-2-amino-5-
cyanopyrimidines through Sodium Alkoxide-Induced Re-
giospecific Cyclization of 1,3-Dicarbonitriles,” Synthesis,
Vol. 12, 1981, pp. 955-958. doi:10.1055/s-1981-29654
[10] A. Kumar, V. Agrawal, H. Ila and H. Jujappa, “A Novel
and Convenient Synthesis of 2-Amino-4-(N-alkyl-N-
arylamino)-pyrimidines using Poolarized Ketene S,S- and
S,N-Acetals,” Synthesis, Vol. 9, 1980, pp. 748-751.
doi:10.1055/s-1980-29200
[11] J. Asserka, H. Schwelmlan and J. Perine, Chemical Ab-
stract, Vol. 122, 1995, Article ID: 239716.
[12] Z. Folki and A. Salaman, “Chemische Berichte,” Euro-
pean Journal of Inorganic Chemistry, Vol. 74, No. 7,
1941, p. 1126.
[13] S. Nishiqate, K. Senqa, K. Arda, T. Takabatake and F.
Yosuda, “Condensation Reactions of Ethyl Ethoxy-
Copyright © 2011 SciRes. IJOC