G. Varadharajan et al. / Natural Science 3 (2011) 459-465

Copyright © 2011 SciRes. OPEN ACCESS

463

REFERENCES

[1] Rubinow, S.I. (1975) Introduction to Mathematical Biol-

ogy. Wiley, New York.

[2] Murray, J.D. (1989) Mathematical biology. Springer

Verlag, Berlin.

[3] Segel, L.A. (1980) Mathematical models in molecular

and cellular biology. Cambridge University Press, Cam-

bridge.

[4] Roberts, D.V. (1977) Enzyme kinetics. Cambridge Uni-

versity Press, Cambridge.

[5] Kasserra, H.P. and Laidler, K.J. (1970) Transient-phase

studies of a trypsin-catalyzed reaction. Canadian Journal

of Chemistry, 48, 1793-1802. doi:10.1139/v70-298

[6] Pettersson, G. (1976) The transient-state kinetics of

two-substrate enzyme systems operating by an ordered

ternary-complex mechanism. European Journal of Bio-

chemistry, 69, 273-278.

d oi:10.1111/j.14 32-1033.1976.tb10883.x

[7] Pettersson, G. (1978) A generalized theoretical treatment

of the transient-state kinetics of enzymic reaction sys-

tems far from equilibrium. Acta Chemica Scandinavica -

Series B, 32, 437-446.

doi:10.3891/acta.chem.scand.32b-0437

[8] Gutfreund, H. (1995) Kinetics for life sciences: Recep-

tors, transmitters and catalysis. Cambridge University

Press, Cambridge. doi:10.1017/CBO9780511626203

[9] Fersht, A.R. (1999) Structure and mechanism in protein

science: A guide to enzyme catalysis and protein folding.

Freeman, New York.

[10] Silicio, F. and Peterson, M.D. (1961) Ratio errors in

pseudo first order reactions. Journal of Chemical Educa-

tion, 38, 576-577. doi:10.1021/ed038p576

[11] Moore, J.W. and Pearson, R.G. (1981) Kinetics and Me-

chanism. Wiley, New York.

[12] Corbett, J.F. (1972) Pseudo first-order kinetics. Journal

of Chemical Education, 49, 663. doi:10.1021/ed049p663

[13] Schnell, S. and Maini, P.K. (2000) Enzyme kinetics at

high enzyme concentration. Bulletin of Mathematical Bi-

ology, 62, 483-499. doi:10.1006/bulm.1999.0163

[14] Schnell, S. and Mendoza, C. (2004) The condition for

pseudo-first-order kinetics in enzymatic reaction is inde-

pendent of the initial enzyme concentration. Journal of

Biophysical Chemistry, 107, 165-174.

doi:10.1016/j.bpc.2003.09.003

[15] Meena, A., Eswari, A. and Rajendran, L. (2010) Mathe-

matical modelling of enzyme kinetics reaction mecha-

nism and analytical sloutions of non-linear reaction equa-

tions. Journal of Mathematical Chemistry, 48, 179-186.

doi:10.1007/s10910-009-9659-5

[16] Li, S.J. and Liu, Y.X. (2006) An improved approach to

nonlinear dynamical system identification using pid neu-

ral networks. International Journal of Nonlinear Science

and Numerical Simulation, 7, 177-182.

[17] Mousa, M.M., Ragab, S.F. and Nturforsch, Z. (2008)

Application of the homotopy perturbation method to lin-

ear and nonlinear schrödinger equations. Zeitschrift für

Naturforschung, 63, 140-144.

[18] He, J.H. (1999) Homotopy perturbation technique.

Computer Methods in Applied Mechanics and Engineer-

ing, 178, 257-262.

[19] He, J.H. (2003) Homotopy perturbation method: a new

nonlinear analytical Technique. Applied Mathematics and

Computation, 135, 73-79.

doi:10.1016/S0096-3003(01)00312-5

[20] He, J.H. (2003) A Simple perturbation approach to Bla-

sius equation. Applied Mathematics and Computation,

140, 217-222. doi:10.1016/S0096-3003(02)00189-3

[21] He, J.H. (2006) Some asymptotic methods for strongly

nonlinear equations. International Journal of Modern

Physics B, 20, 1141-1199.

doi:10.1142/S0217979206033796

[22] He, J.H., Wu, C.G. and Austin, F. (2010) The variational

iteration method which should be followed. Nonlinear

Science Letters A, 1, 1-30.

[23] He, J.H. (2003) A coupling method of a homotopy tech-

nique and a perturbation technique for non-linear prob-

lems. International Journal of Non-Linear Mechanics, 35,

37-43. doi:10.1016/S0020-7462(98)00085-7

[24] Ganji, D.D., Amini, M. and Kolahdooz, A. (2008) Ana-

lytical investigation of hyperbolic equations via he’s me-

thods. American Journal of Engineering and Applied

Sciences, 1, 399-407.

[25] Loghambal, S. and Rajendran, L. (2010) Mathematical

modeling of diffusion and kinetics of amperometric im-

mobilized enzyme electrodes. Electrochimica Acta, 55,

5230-5238. doi:10.1016/j.electacta.2010.04.050

[26] Meena, A. and Rajendran, L. (2010) Mathematical mod-

eling of amperometric and potentiometric biosensors and

system of non-linear equations—Homotopy perturbation

approach. Journal of Electroanalytical Chemistry, 644,

50-59. doi:10.1016/j.jelechem.2010.03.027

[27] Eswari, A. and Rajendran, L. (2010) Analytical solution

of steady state current an enzyme modified microcylinder

electrodes. Journal of Electroanalytical Chemistry, 648,

36-46. doi:10.1016/j.jelechem.2010.07.002