Applied Mathematics, 2011, 2, 791-799
doi:10.4236/am.2011.26106 Published Online June 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
A Non-Preemptive Priority Queueing System with a Single
Server Serving Two Queues M/G/1 and M/D/1 with
Optional Server Vacations Based on Exhaustive
Service of the Priority Units
Kailash C. Madan
College of Information Technology, Ahlia University, Manama, Kingdom of Bahrain
E-mail: kcmadan@yahoo.com, kailash@ahliauniversity.edu.bh
Received March 22, 2011; revised May 9, 2011; accepted May 13, 2011
Abstract
We study a vacation queueing system with a single server simultaneously dealing with an M/G/1 and an
M/D/1 queue. Two classes of units, priority and non-priority, arrive at the system in two independent Poisson
streams. Under a non-preemptive priority rule, the server provides a general service to the priority units and a
deterministic service to the non-priority units. We further assume that the server may take a vacation of ran-
dom length just after serving the last priority unit present in the system. We obtain steady state queue size
distribution at a random epoch. Corresponding results for some special cases, including the known results of
the M/G/1 and the M/D/1 queues, have been derived.
Keywords: Non Preemptive Priority Queueing System, Modified Server Vacations, Combination of General
Service and Deterministic Service, Steady State, Queue Size Distribution
1. Introduction
Several authors including Cobham [1], Phipps [2],
Schrage [3], Jaiswal [4], Madan [5], Simon [6], Takagi
[7], Choi and Chang [8] have studied priority queues.
These authors and several others have studied single
server or multi-server queues with two or more priority
classes under preemptive or non-preemptive priority rules.
All these authors essentially assume the same service
time distribution for all classes of units with identical or
different service rates. Madan and Abu-Dayyeh [9] deal
with a single server queueing system with two classes of
units, priority units and non-priority units. Under the
non-preemptive queue discipline, they assume that the
service time V of a priority unit has a general distribution
and that of a non–priority unit is deterministic. Thus their
model is a combination of the M/G/1 and M/D/1 queues
and the server keeps switching over these two queues
depending on the class of units present in the system. For
separate references on M/G/1 and M/D/1 queues, the
reader is referred to Bhat [10], Levy and Yechiali [11],
Kleinrock [12], Cohen [13], Lee [14], Gross and Harris
[5], Cox and Miller [16], Tijms [17], Yang and Li [18],
Bunday [19] and Madan [20,21]. However, in the present
paper, we generalize Madan and Abu-Dayyeh [9] paper
by adding a significant assumption to their model that the
server may take a vacation of random length but we as-
sume that no vacation is allowed if there is even a single
priority unit present in the system. Thus the server may
take an optional vacation of a random length just after
completing the service of the last priority unit present in
the system or else may just continue serving the
non-priority units if present in the system.
We use the supplementary variable technique by in-
troducing two supplementary variables, one for the
elapsed service time of a priority unit and the other for
the elapsed vacation time of the server. Thus, we gener-
alize the results of not only Madan and Abu-Dayyeh [9],
but also some other known results of the M/G/1 and the
M/D/1 queues as particular cases.
2. Assumptions Underlying the
Mathematical Model
Priority and non-priority units arrive at the system in
independent Poisson streams with respective mean arri-
K. C. MADAN
792
val rates 1
and 2
and form two queues, if the server
is busy. The server must serve all the priority units pre-
sent in the system before taking up a non-priority unit for
service. In other words, there is no priority unit present
in the system at the time of starting service of a non-
priority unit. Further, we assume that the server follows a
non-preemptive priority rule, which means that if one or
more priority units arrive during the service time of a
non-priority unit, the current service of a non-priority
unit is not stopped and a priority unit will be taken up for
service only after the current service of a non-priority
unit is complete. Units are served one by one, on a
‘first-come, first-served’ basis within each class of units.
We assume that the service time of a priority unit is
general with probability density function and the
distribution function . Let
S

bs

Bs
x
dx be the condi-
tional probability of completion of service of a priority
unit during the interval
,
x
xdx given that the
elapsed service time of such a unit is
x
, so that


1
bx
xBx
(2.1)
and, therefore,
 
0
expd .
s
bssx x




(2.2)
The service time of a non-priority unit is deterministic
with constant duration (>0).
d
We further assume that as soon as the service of the
last priority unit present in the system is completed, the
server has the option to take a vacation of random length
with probability , in which case the vacation starts
immediately or else with probability
he may
decide to continue serving the non-priorty units present
in the system, if any. In the later case, if there is no
non-priority unit present in the system, the server re-
mains idle in the system waiting for the new units to ar-
rive. The vacation period random variable V is as-
sumed to follow a general probability law with probabil-
ity density function and the distribution function
p
1p

av

v. Let

x
dx be the conditional probability of
completion of server’s vacation during the interval
,
x
xdx given that the elapsed vacation time of the
server is
x
, so that


1
ax
x
A
x
(2.3)
and, therefore,
 
0
exp d
s
assx x




3. Definitions and Notations
. (2.4)
We define

1
,,
mn
Pxt: probability that at time t there are m (0)
priority units and n (0) non-priority units in the queue
excluding one priority unit in service with elapsed ser-
vice time x.




11
,,
0
,d
mn mn
Pt Pxtx
: probability that at time t there
are m (0) priority units and n (0) non-priority units in
the queue excluding one priority unit in service without
regard to the elapsed service time x of a priority unit.
,,
mn
Vxt: probability that at time t the server is on
vacation with elapsed vacation time x and there are m
(0) priority units and n (0) non-priority units in the
queue.
 
,,
0
,d
mn mn
Vt Vxt
x: probability that at time t the
server is on vacation and there are m (0) priority units
and n (0) non-priority units in the queue, without regard
to the elapsed repair time x.


2
0,n
P
t: probability that at time t there are no priority
units in the system and n (0) non-priority units in the
queue excluding one non-priority unit in service.
Q(t): probability that at time t there is neither a priority
unit nor a non-priority unit in the system and the server is
idle but available in the system.
i: probability that i (= 0, 1, 2, ···) priority units arrive
during the constant service time d of a non-priority unit.
r
j
k: probability that j (= 0, 1, 2, ···) non-priority units
arrive during the constant service time d of a non-priority
unit.
Then assuming that the steady state exists, let




11
,,
lim ,
mn mn
tPxtPx
 ,





11
,,
0
limd ,
mn mnmn
tPt PxxP
 
1
,

,,
lim ,
mn mn
tVxtVx

 
22
,
 
,,
0
limd ;
mn mnmn
tVt VxxV
 
,

0, 0,
lim nn
tPtP

and
lim
tQt Q

denote the corresponding steady state probabilities. In
addition, we define the following steady state probability
enerating functions: g
Copyright © 2011 SciRes. AM
K. C. MADAN
Copyright © 2011 SciRes. AM
793
1
,
m
,
1
,
m
,
2
1








1111
2,21 ,
00
,; ,
n
mmnn mn
nm
PxzPxzPxz Pxz




(3.1a)








1111
12, 122112
000 0
,,,,,
mnm n
mn mn
mn mn
PxzzPxzz PxzzPxzz
 
 

 (3.1b)





11 1
12 12,12
00
0
,,,d mn
mn
mn
Pzz PxzzxPzz




(3.1c)
 
2,21 ,
00
,; ,
n
mmnn mn
nm
VxzV xzVxzV xz




(3.1d)
 
12, 122112
000 0
,,,, ,
mnm n
mn m n
mnm n
VxzzVxzz Vxzz Vxzz
 
 

 (3.1e)
 
12 12,12
00
0
,,,d mn
mn
mn
VzzVxzzxVzz




(3.1f)



2
02 0,2
0
,
n
n
n
Pz Pz
(3.1g)



1
02 0,2
0
,
n
n
n
Pz Pz
(3.1h)
  
11
111 11
00
exp exp1,
!
i
ii
i
ii
dd
Rzrzzd z
i





 


 (3.1i)
  
22
222 2
00
exp exp1 ,
!
j
jj
j
jj
dd
Kzkzzd z
j





 
2


 (3.1j)
12
1, 1.zz
4. Steady State Equations Governing the System
Usual probability reasoning based on our mathematical model, leads to the following equations.

 







1111
,12 ,11,2,1
d, 1,1,
dmnmnm nmn
PxxPxP xP xmn
x
 

  (4.1)

 





111
,012,01 1,0
d, 1,0,
dmmm
PxxPxPxm n
x
 
  (4.2)

 





111
0,120,2 0,1
d, 0,1,
dnnn
PxxPxPxm n
x
 
  (4.3)

 



11
0,0120,0
d0, 0,0,
dPxxPxmn
x
 
  (4.4)
 

 
,12 ,11,2,1
d, 1,1,
dmnmnm nmn
VxxVxV xV xmn
x
 

  (4.5)
 

 
,012,01 1,0
d, 1,0,
dmmm
VxxVx Vxmn
x
 
  (4.6)
 

 
0,120,20,1
d, 0,1,
dnnn
VxxVxVxm n
x
 
  (4.7)
K. C. MADAN
794
 


0,01 20,0
d0, 0,0,
dVxxVxm n
x
 
  (4.8)




 
21
0,00 00,00,0
00
1dQQPrkpPxxVx xx

 

d,
d,
,1.
1,1,
1,0,
0,1,
0.
n
(4.9)
 




 
2221
0,00,0010,1000,10,1
00
1dPQPrk PrkpPxxVxxx

 
 (4.10)
 




 
1
22 21
0,0,0010,0 10,10,1
100
1dd
n
nnjnjnn
j
PQPrkPrkpPxxVxxxn



 
 (4.11)
The above equations are to be solved subject to the following boundary conditions:



 

 
11 2
,1, 0,111,
0
00
0dd,
n
mnmnjm njm nmn
j
PPxxxPrkQrkVxxxmn





(4.12)



 

 
11 2
,01,00,0 10101,0
00
0dd,
mm mmm
PPxxxPrkQrkVxxxmn



 

(4.13)



 

 
11 2
0,1,0, 111,
0
00
0dd,
n
nn jnjnn
j
PPxxxPrkQrkVxxxmn


 

(4.14)



 

 
11 2
0,01,00,010101,0
00
0dd, PPxxxPrkQrkVxxxm


 

(4.15)


 
1
0, 0,
0
0
nn
VpPxxxn
d,0
(4.16)
5. Steady State Queue Size Distribution at a Random Epoch
We perform the operations; and use Equation (3.1). Thus we obtain
 
2
1
4.1 4.2
n
n
z
 
2
1
4.3 4.4
n
n
z

 







1111
212211222 2
d,,,
dmmmm
PxzxPxzPxzzPxzm
x
 
 
,, 1, (4.17)

 




11
0212 022202
d,,
dPxzxPxz zPxz
x
 
 
1
,.
(4.18)
Next, we perform , use (3.1) and simplify. Then we have,
 
1
1
4.17 4.18
m
m
z





11
12112212
d,,11,,0.
dPxzzzzxPxzz
x
 
  (4.19)
Similarly, we perform the operations ; and use Equation (3.1). Thus we obtain
 
2
1
4.5 4.6
n
n
z

2
1
4.7 4.8
n
n
z
 


212211222 2
d,,,
dmmmm
VxzxVxzVxzzVxz m
x
 
 
,, 1,
(4.20)
 

 
0212022202
d,,
dVxzxVxz zVxz
x
 
 
,.
(4.21)
Next, we perform , use (3.1) and simplify. Then we have,
 
1
1
4.20 4.21
m
m
z
Copyright © 2011 SciRes. AM
K. C. MADAN795



12112212
d,,11,, 0.
dVxzzzzxVxzz
x
 
  (4.22)
Then we perform
 
1
2
1
4.94.104.11n
n
z
2
z

, use (3.1) and simplify. Thus we have

 

  
21
(2)
2020 202020 202
00
1,d ,zPzQrK zpPxzxxPzrK zQVxzxx


 

d,
d.
1
z
d
x
(4.23)
which again simplifies to





 
21
20 202020 202
00
1,d ,zrKzPzpPxzxx QrKzQVxzxx


 

(4.24)
Now, we shall consider the boundary conditions (4.12) through (4.16) and perform ;
, use (3.1) and simplify. We then obtain
 
1
11
1
4.12 4.14
m
m
zz
 
1
1
1
4.13 4.15
m
m
z





 





11 1
11 10,10,
0000
2
10 0,10
01
0,, dd, dd
, 1,
nnn nn
n
jnj n
jn
zPzP xzxxPxxxVxzxx Vxxx
Rz rPkRzrQkn
 



 


(4.25)





 



11 12
101010,0010,010 0,00
0000
0,, dd, dd.zPzPxzxxPxxxVxzx xVxx xRzrPQk
 



(4.26)
And yet again, we perform , use (3.1) and simplify. This operation yields

2
1
4.25 4.26
n
n
z












11 1
112 12021202
0000
2
100 22
0,,,,d,d,,d ,
.
zPzzPxzzx xPxzx xVxzzx xVxzx x
Rzr PzQKz



 

(4.27)
Similarly, on performing and using (3.1), we obtain

2
0
4.16 n
n
z



1
020 2
0
0,, dVz pPxzx
. (4.28)
Now, we integrate (4.19) from 0 to x and obtain



 
11
12121122
0
,,0,, exp11d
x
Pxzz Pzzzxzxtt
 

, (4.29)
where is given by (4.27).

1
12
0, ,Pzz
Similarly, on integrating, (4.22) gives
 
12121 122
0
,,0,,exp11d
x
VxzzVzzz xzxtt
 

. (4.30)
However, by its definition, and, therefore, (4.30) is re-written as

120 2
0, ,0,VzzV z
 
120 21122
0
,,0,exp11d.
x
VxzzVzz xzxtt
 

(4.31)
Copyright © 2011 SciRes. AM
K. C. MADAN
Copyright © 2011 SciRes. AM
796
where is given by (4.28).
02
0,Vz
Once again integrating (4.29) and (4.31) with respect to x by parts and using (2.2) and (2.4), we have



 

*
112 2
11
12 12
112 2
111
,0,,11
Bzz
Pzz Pzzzz


,

 
(4.32)
 

*
112 2
120 2
112 2
111
,0, 11
Vz z
Vzz V zzz


,

 
(4.33)
where



1122
11
*
112 2
0
11ed
zz
Bz zB





  



 

1122
11
*
112 2
0
11ed
zz
Vz zV




  

x
x
is the LST of the service time of a priority unit and
is the LST of the server’s vacation time respectively.
Now, Equation (4.18) can be re-written as

 



11
02122 02
d,1 ,
dPxzzxPxz
x
 
 
0.
d.
which, on integration, gives



 
11
0202 122
0
,0,exp 1
x
PxzPzxzxtt
 

(4.34)
and (4.21) yields

0202122
0
,0,exp 1
x
VxzV zxzxtt

d.

(4.35)
Next, we shall determine the integrals of Equations (4.24), (4.27) and (4.28).


1
12
0
,, dPxzz xx
, and


1
02
0
,Pxz xx
Then we multiply Equations (4.29) and (4.34) by
x
, integrate by parts with respect to x and use equa-
tion (2.2). Thus we obtain
d
d

02
0
,Vxz xx
which appear in the right hand sides

 

1 1
*
1211 2212
0
,,d110,, ,Pxzzx xBzzPzz




1
,
(4.36)

 


1
*
02 12202
0
,d1 0,PxzxxBzPz



(4.37)
Similarly, we multiply Equations (4.31) and (4.35) by
x
, integrate by parts with respect to x and obtain
 
*
12112202
0
,, d110,Vxzzx x VzzVz




.
0,
(4.38)
 
*
0212202
0
,d10,VxzxxVzVz




(4.39)
Using Equations (4.36) to (4.39) into Equations (4.24), (4.27) and (4.28), we obtain



 
2(1)
2020212202021 2202
110,1zrKzPzpBzPz QrKz QVzVz
 


 
 
(4.40)
K. C. MADAN797
1
2
,

 

 


 






11
112112212 1220
112 20212 202
2
100 22
0,,110,,10
110,10,
.
zP zzBzzPzzBzPz
VzzV zVzVz
Rzr PzQKz
 
 


 





 
(4.41)
 

1
0212202
0,1 0,Vz pBzPz




(4.42)
Next, we substitute the value of
02
0,Vz
from
Equation (4.42) into Equations (4.40) and (4.41), replace
1
Rz by and
11
edz
1
2
K
z by from
(3.1f) and (3.1g) and simplify. We obtain
22
1
edz

1
1
z



 



22 22
12 1
20021 221 22020
e1110,e
dz dz
zrPzppVzBzPzQrQ
 
 
 




 (4.43)





 


 








11 1122
1
112 212
1 1
1220 212211220 2
112
12 212 202002
11 0,,
10,1 110,
110,ee.
dd
zBzzPzz
BzPzpBzVzzPz
pBzVzPzr PzQ
 

 
 

 






  
 
  



1
(4.44)
Now, substituting for from Equation (4.44) into Equation (4.32), we have
12
0, ,Pzz













 



112 2
*
112 212 1
00 2
112 2
1
12 *
11122
*
1
112 2*
12 202
112 2
*
1112
111 ee
11
,11
1[11]10,
11
1
dz dz
Bz zrP zQ
zz
Pzz zB zz
Bz z
BzPz
zz
zB z




 


 







 





 



 





  






2
*
112 21
**
12 2112 202
112 2
*
11122
*
112 2
112 2
1
11 11110
11
11
111
11
z
Bzz
pBz VzzPz
zz
zB zz
Bzz
zz
  










  

 

 






 
 


,


1
**
12 212 202
*
11122
110,
11
pBz VzPz
zB zz
 


 






(4.45)
We have yet to determine the 3 unknowns ,
and
Q appearing in the numerator of the right
hand side of (4.45). For this purpose, we proceed as fol-
lows.


1
02
0,Pz


2
02
Pz
It can be easily shown that the denominator of the
right hand side of (4.45) has one zero inside or on the
unit circle 11z
. Let this zero be denoted as
.
Therefore, the numerator of the right side of (4.45) must
vanish for this zero giving








 


 


122
11
(2) *
00212202
1
**
12 212 202
1
**
12 212202
ee1
1110,
110,0.
ddz
rPzQBz Pz
pBz VzPz
pBz VzPz
 
 
 

 


 
 
 
 


1
0,
2
(4.46)
Now, we solve Equations (4.43) and (4.46) for the two unknowns and . Thus we obtain

1
0
0,Pz


2
02
Pz







122
11
0
1
0
ee1
,
ddz
rz
Poz Dz
 
 

2
Q
(4.47)
Copyright © 2011 SciRes. AM
K. C. MADAN
798



 


 


122
22
11
122 0
12 21
112 212 20
2
02
11ee
1
(1111 1e
ddz
dz
ppVz r
Bz Q
pVzzpVzr
Pz Dz
 

  
 



 





 

 



(4.48)
where D(z) in Equations (4.47) and (4.48) is the common denominator given by


 

1
22
1
12 212 20
1
112 212 220
11 [1e
(1p111e
d
dz
DzBzp pVzr
Vz zpVzzr

 
 






 





 



(4.49)
Then, we substitute for and

1
0
0,Pz
2
from (4.47) and (4.48) into Equation (4.45) giving us
. Finally, we shall use the normalizing condi-
tion to determine the only re-


2
02
Pz

1
12
,Pzz

1,1



12
011PPQ
maining unknown Q.
Using L’ Hopital’s rule and proceeding as in Madan
and Aby-Dayyeah (2003), we obtain
 

 

12
121
1( 1
11
ES pEVd
QdESpEVdESpEV



 


(4.50)
where E(S) is the mean service time of a priority unit and
E(V) is the mean vacation time of the server.
Having thus determined the value of Q, the probability
that the server is idle, we have completely determined
.


1
12
,Pzz
Further, system’s utilization factor is given by


 

 

121
121
(11(
111
dESpEVdESpEV d
QdESpEV dESpEV




 2

(4.51)
The stability condition, under which the steady state exists, emerges from (4.50 and (4.51)). This condition is given
by
 
 

 

121
121
(11(
01
11
d ESpEVdESpEVd
dESpEVdESpEV









2
.
(4.52)
Note that (4.52) essentially implies that

11ESpEV
and 21d
should jointly hold for the steady state
to exist. This is also intuitively true.
6. Particular Cases
Case 1: If there are no server vacations, then we let p = 0 in the above results (4.45) to (4.52) and obtain













 



112 2
*
112 212 1
00 2
112 2
1
12 *
11122
*
112 21
*
12 202
112 2
*
111
111ee
11
,11
11 110,
11
1
dz dz
Bz zrP zQ
zz
Pzz zB zz
Bzz
BzPz
zz
zB z




 

 







 













 




22
1z


(4.53)









122
12 11
*
002122 02
ee1
ddz
rPzQBz Pz
 
 
 

0,
(4.54)
Copyright © 2011 SciRes. AM
K. C. MADAN799









122
22
1(1
0
1
01
12 220
ee1
,
1e
ddz
dz
rz
PozBzzr
 




2
Q
 


(4.55)

 

 



122 22
22
11 1
122 00
2
02 1
12 220
1ee1e
1e
ddz dz
dz
Bzr r
Pz Bzzr
 


  


 






Q
(4.56)
We further obtain Q the steady state probability that
thw server is idle as
 
 
12
121
11
11
ES d
QdESdES





(4.57)
where E(S) is the mean service time of a priority unit.
The utilization factor of the system is given by

 
121
121
11
111
dE SdE Sd
QdE SdES





 

2
(4.58)
The stability condition, under which the steady state
exists, emerges from (4.57 and (4.58). This condition is
given by
 
 
1212
121
11
0
11
dE SdE Sd
dE SdES






1.
(4.59)
All results in (4.53) to (4.59) agree with the results of
Madan and Abu-Dayyeah [15].
We may point out that with suitable substitutions, the
main results of this paper will reduce to many other par-
ticular cases including a combination of 1
k
M
E and
1
M
D queues, a combination of 1
M
M and 1
M
D
queues, the case when no priority units arrive at the sys-
tem and the case when no non-priority units arrive at the
system. Further, with p = 0, the results of all the particu-
lar cases of this paper agree with the corresponding par-
ticular cases of Madan and Abu-Dayyeah [9].
7. References
[1] A. Cobham, “Priority Assignments in Waiting Line Pro-
blems,” Operions Research, Vol. 2, No. 1, 1954, pp.
70-76. doi:10.1287/opre.2.1.70
[2] T. E. Phipps, “Machine Repair as a Priority Waiting Line
Problem,” Operations Research, Vol. 4, No. 1, 1956, pp.
76-85. doi:10.1287/opre.4.1.76
[3] L. E. Schrage, “The Queue M/G/1 with Feedback to
Lower Priority Queues,” Management Science, Vol. 13,
No. 7, 1967, pp. 466-474. doi:10.1287/mnsc.13.7.466
[4] N. K. Jaiswal, “Priority Queues,” Academic Press, New
York, 1968.
[5] K. C. Madan, “A Priority Queueing System with Service
Interruptions,” Statistica Neerlandica, Vol. 27, No. 3,
1973, pp. 115-123.
doi:10.1111/j.1467-9574.1973.tb00217.x
[6] B. Simon, “Priorty Queues with Feedback,” Journal of
the Association for Computing Machinery, Vol. 31, No. 1,
1984, pp. 134-149.
[7] H. Takagi, “Vacation and Priority Systems,” Queueing
Analysis, Vol. 1, Amsterdam, 1991.
[8] B. D. Choi, and Y. Chang, “Single Server Retrial Queues
with Priority Calls,” Mathematical and Computer Mod-
eling Vol. 30, No. 3-4, 1999, pp. 7-32.
doi:10.1016/S0895-7177(99)00129-6
[9] K. C. Madan and W. Abu-Dayyeah, “On a Combination
of M/G/1 and M/D/1 Queues in Non-Preemptive Priority
Queueing System,” Far East Journal of Theoretical Sta-
tistics, Vol. 10, No. 2, 2003, pp. 133-146.
[10] U. N. Bhat, “Elements of Applied Stochastic Processes,”
Wiley, New York, 1972.
[11] Y. Levy and U. Yechiali, “Utilization of Idle Time in an
M/G/1 Queueing System,” Management Science, Vol. 22,
No. 2, 1975, pp. 202-211. doi:10.1287/mnsc.22.2.202
[12] L. Kleinrock, “Queueing Systems, Vol. 2, Computer Ap-
plications,” Wiley, New York, 1976.
[13] J. W. Cohen, “The Single Server Queue, 2nd Edition,
North-Holland, Amsterdam, 1982.
[14] T. T. Lee, “M/G/1/N Queue with Vacation Times and
Exhaustive Service Discipline,” Operations Research,
Vol. 32, No. 4, 1984, pp. 774-786.
doi:10.1287/opre.32.4.774
[15] D. Gross and C. M. Harris, “Fundamentals of Queueing
Theory,” 2nd Edition, Wiley, New York, 1985.
[16] D. R. Cox and H. D. Miller, “The Theory of Stochastic
Processes,” Chapman and Hall, London, 1994.
[17] H. C. Tijms, “Stochastic Models: An Algorithmic Ap-
proach,” Wiley, New York, 1994.
[18] T. Yang and H. Li, “The M/G/1 Retrial Queue with the
Server Subject to Starting Failures,” Queueing Systems,
Vol. 16, No. 1-2, 1994, pp. 83-96.
doi:10.1007/BF01158950
[19] B. D. Bunday, “Basic Queueing Theory,” 2nd Edition,
Edward Arnold, Melbourne, 1995.
[20] K. C. Madan, “An M/G/1 Queue with Optional Determi-
nistic Server Vacations,” Metron, Vol. 57, No. 3-4, 1999,
pp. 83-95.
[21] K. C. Madan, “An M/G/1 Queue with Second Optional
Service,” Queueing Systems, Vol. 34, No. 1-4, 2000, pp.
37-46. doi:10.1023/A:1019144716929
Copyright © 2011 SciRes. AM