D. H. FENG ET AL.

756

Evolution Equations and Inverse Scattering,” Cambridge

University Press, London, 1991.

doi:10.1017/CBO9780511623998

[2] H. Z. Liu, J. B. Li and L. Liu, “Lie Symmetry Analysis,

Optimal Systems and Exact Solutions to the Fifth-Order

KdV Types of Equations,” Journal of Mathematical

Analysis and Applications, Vol. 368, No. 2, 2011, pp

0.03.026

.

551-558. doi:10.1016/j.jmaa.201

J. B. Li, “Lie Symmetry Analysis and Ex-

act Solutions for the Short Pulse Equation,” Nonlinear

[3] H. Z. Liu and

Analysis: Theory, Methods and Applications, Vol. 71, No.

5-6, 2009, pp. 2126-2133.

doi:10.1016/j.na.2009.01.075

[4] A. Y. Chen and J. B. Li, “Single Peak Solitary Wave

Solutions for the Osmosis K(2, 2) Equation under Inho-

mogeneous Boundary Condition,” Journal of Mathe-

matical Analysis and Applications, Vol. 369, No. 2, 2010,

pp. 758-766. doi:10.1016/j.jmaa.2010.04.018

[5] D. H. Feng and J. B. Li, “Exact Explicit Traveling Wave

Solutions for the (n + 1)-Dimensional Φ6 Field Model,”

Physics Letters A, Vol. 369, No. 4, 2007, pp. 255-261.

doi:10.1016/j.physleta.2007.04.088

[6] J. W. Shen, W. Xu and Y. Xu, “Traveling Wave Solu-

tions in the Generalized Hirota-Satsuma Coupled KdV

Sys tem ,” Applied Mathematics and Computation, Vol.

161, No. 2, 2005, pp. 365-383.

doi:10.1016/j.amc.2003.12.033

[7] A. M. Wazwaz, “A Sine-Cosine Method for Handling

Nonlinear Wave Equations,” Mathematical and Com-

puter Modelling, Vol. 40, No. 5-6, 2004, pp. 499-508.

doi:10.1016/j.mcm.2003.12.010

[8] A. M. Wazwaz, “Solitons and Periodic Solutions for t

Fifth-Order KdV Equation,” Applied

he

, Mathematics Letters

Vol. 19, No. 11, 2006, pp. 1162-1167.

doi:10.1016/j.aml.2005.07.014

[9] A. M. Wazwaz, “Analytic Study on Nonlinear Variant of

the RLW and the PHI-Four Equ

in Nonlinear Science and Numer

ations,” Communications

ical Simulation, Vol. 12,

No. 3, 2007, pp. 314-327.

doi:10.1016/j.cnsns.2005.03.001

[10] Z. Y. Yan, “New Explicit Traveling Wave Solutions

Two New Integrable Coupled No

for

nlinear Evolution Equa-

tions,” Physics Letters A, Vol. 292, No. 1-2, 2001, pp.

100-106. doi:10.1016/S0375-9601(01)00772-1

[11] M. A. Abdou, “New Solitons and Per

tions for Nonlinear Physical Mo

iodic Wave Solu-

dels,” Nonlinear Dynam-

ics, Vol. 52, No. 1-2, 2008, pp. 129-136.

doi:10.1007/s11071-007-9265-7

[12] M. L. Wang, “Exact Solutions for a Compound KdV-

Burgers Equation,” Physics Letters A, Vol. 213, No. 5-6,

1996, pp. 279-287. doi:10.1016/0375-9601(96)00103-X

[13] X. J. Deng, M. Zhao and X. Li, “Travel

tions for a Nonlinear Variant of t

ing Wave Solu-

he PHI-Four Equation,”

Mathematical and Computer Modelling, Vol. 49, No. 3-4,

2009, pp. 617-622. doi:10.1016/j.mcm.2008.03.011

[14] E. G. Fan, “Uniformly Constructing a Series of Explicit

Exact Solutions to Nonlinear Equations in Mathematical

Physics,” Chaos, Solitons and Fractals, Vol. 16, No. 5,

2005, pp. 819-839. doi:10.1016/S0960-0779(02)00472-1

[15] S. Zhang and H. Q. Zhang, “Fan Sub-Equation Method

for Wick-Type Stochastic Partial Differential Equations,”

Physics Letters A, Vol. 374, No. 41, 2010, pp. 4180-4187.

doi:10.1016/j.physleta.2010.08.023

[16] D. H. Feng and G. X. Luo, “The Improved Fan Sub-

Equation Method and Its Application to the SK Equa-

tion,” Applied Mathematics and Computation, Vol. 215,

No. 5, 2009, pp. 1949-1967.

doi:10.1016/j.amc.2009.07.045

[17] E. Yomba, “The Extended Fan’s Sub-Equation Method

and Its Application to KdV-MKdV, BKK and Variant

Boussinesq Equations,” Physics Letters A, Vol. 336, No.

6, 2005, pp. 463-476. doi:10.1016/j.physleta.2005.01.027

K. Elagan, “The Travel-[18] K. A. Gepreel, S. Omran and S.

ing Wave Solutions for Some Nonlinear PDEs in Mathe-

matical Physics,” Applied Mathematics, Vol. 2, No. 3,

2011, pp. 343-347. doi:10.4236/am.2011.23040

[19] B. A. Kupershmidt, “A Super Korteweg-de Vries Equa-

tion: An Integrable System,” Physics Letters A, Vol. 102,

No. 5-6, 1984, pp. 213-215.

doi:10.1016/0375-9601(84)90693-5

[20] M. Musette and C. Verhoeven, “Nonlinear Superposition

(00)00081-6

Formula for the Kaup-Kupershmidt Partial Differential

Equation,” Physica D, Vol. 144, No. 1-2, 2000, pp. 211-

220. doi:10.1016/S0167-2789

ic Computation of [21] U. Goktas and W. Hereman, “Symbol

Conserved Densities for Systems of Nonlinear Evolution

Equations,” Journal of Symbolic Computation, Vol. 24,

No. 5, 1997, pp. 591-622. doi:10.1006/jsco.1997.0154

[22] D. Baldwin, U. Goktas, W. Hereman, L. Hong, R. S.

Martino and J. C. Miller, “Symbolic Computation of Ex-

act Solutions Expressible in Hyperbolic and Elliptic

Functions for Nonlinear PDEs,” Journal of Symbolic

Computation, Vol. 37, No. 6, 2004, pp. 699-705.

doi:10.1016/j.jsc.2003.09.004

Copyright © 2011 SciRes. AM