D. H. FENG ET AL.
756
Evolution Equations and Inverse Scattering,” Cambridge
University Press, London, 1991.
doi:10.1017/CBO9780511623998
[2] H. Z. Liu, J. B. Li and L. Liu, “Lie Symmetry Analysis,
Optimal Systems and Exact Solutions to the Fifth-Order
KdV Types of Equations,” Journal of Mathematical
Analysis and Applications, Vol. 368, No. 2, 2011, pp
0.03.026
.
551-558. doi:10.1016/j.jmaa.201
J. B. Li, “Lie Symmetry Analysis and Ex-
act Solutions for the Short Pulse Equation,” Nonlinear
[3] H. Z. Liu and
Analysis: Theory, Methods and Applications, Vol. 71, No.
5-6, 2009, pp. 2126-2133.
doi:10.1016/j.na.2009.01.075
[4] A. Y. Chen and J. B. Li, “Single Peak Solitary Wave
Solutions for the Osmosis K(2, 2) Equation under Inho-
mogeneous Boundary Condition,” Journal of Mathe-
matical Analysis and Applications, Vol. 369, No. 2, 2010,
pp. 758-766. doi:10.1016/j.jmaa.2010.04.018
[5] D. H. Feng and J. B. Li, “Exact Explicit Traveling Wave
Solutions for the (n + 1)-Dimensional Φ6 Field Model,”
Physics Letters A, Vol. 369, No. 4, 2007, pp. 255-261.
doi:10.1016/j.physleta.2007.04.088
[6] J. W. Shen, W. Xu and Y. Xu, “Traveling Wave Solu-
tions in the Generalized Hirota-Satsuma Coupled KdV
Sys tem ,” Applied Mathematics and Computation, Vol.
161, No. 2, 2005, pp. 365-383.
doi:10.1016/j.amc.2003.12.033
[7] A. M. Wazwaz, “A Sine-Cosine Method for Handling
Nonlinear Wave Equations,” Mathematical and Com-
puter Modelling, Vol. 40, No. 5-6, 2004, pp. 499-508.
doi:10.1016/j.mcm.2003.12.010
[8] A. M. Wazwaz, “Solitons and Periodic Solutions for t
Fifth-Order KdV Equation,” Applied
he
, Mathematics Letters
Vol. 19, No. 11, 2006, pp. 1162-1167.
doi:10.1016/j.aml.2005.07.014
[9] A. M. Wazwaz, “Analytic Study on Nonlinear Variant of
the RLW and the PHI-Four Equ
in Nonlinear Science and Numer
ations,” Communications
ical Simulation, Vol. 12,
No. 3, 2007, pp. 314-327.
doi:10.1016/j.cnsns.2005.03.001
[10] Z. Y. Yan, “New Explicit Traveling Wave Solutions
Two New Integrable Coupled No
for
nlinear Evolution Equa-
tions,” Physics Letters A, Vol. 292, No. 1-2, 2001, pp.
100-106. doi:10.1016/S0375-9601(01)00772-1
[11] M. A. Abdou, “New Solitons and Per
tions for Nonlinear Physical Mo
iodic Wave Solu-
dels,” Nonlinear Dynam-
ics, Vol. 52, No. 1-2, 2008, pp. 129-136.
doi:10.1007/s11071-007-9265-7
[12] M. L. Wang, “Exact Solutions for a Compound KdV-
Burgers Equation,” Physics Letters A, Vol. 213, No. 5-6,
1996, pp. 279-287. doi:10.1016/0375-9601(96)00103-X
[13] X. J. Deng, M. Zhao and X. Li, “Travel
tions for a Nonlinear Variant of t
ing Wave Solu-
he PHI-Four Equation,”
Mathematical and Computer Modelling, Vol. 49, No. 3-4,
2009, pp. 617-622. doi:10.1016/j.mcm.2008.03.011
[14] E. G. Fan, “Uniformly Constructing a Series of Explicit
Exact Solutions to Nonlinear Equations in Mathematical
Physics,” Chaos, Solitons and Fractals, Vol. 16, No. 5,
2005, pp. 819-839. doi:10.1016/S0960-0779(02)00472-1
[15] S. Zhang and H. Q. Zhang, “Fan Sub-Equation Method
for Wick-Type Stochastic Partial Differential Equations,”
Physics Letters A, Vol. 374, No. 41, 2010, pp. 4180-4187.
doi:10.1016/j.physleta.2010.08.023
[16] D. H. Feng and G. X. Luo, “The Improved Fan Sub-
Equation Method and Its Application to the SK Equa-
tion,” Applied Mathematics and Computation, Vol. 215,
No. 5, 2009, pp. 1949-1967.
doi:10.1016/j.amc.2009.07.045
[17] E. Yomba, “The Extended Fan’s Sub-Equation Method
and Its Application to KdV-MKdV, BKK and Variant
Boussinesq Equations,” Physics Letters A, Vol. 336, No.
6, 2005, pp. 463-476. doi:10.1016/j.physleta.2005.01.027
K. Elagan, “The Travel-[18] K. A. Gepreel, S. Omran and S.
ing Wave Solutions for Some Nonlinear PDEs in Mathe-
matical Physics,” Applied Mathematics, Vol. 2, No. 3,
2011, pp. 343-347. doi:10.4236/am.2011.23040
[19] B. A. Kupershmidt, “A Super Korteweg-de Vries Equa-
tion: An Integrable System,” Physics Letters A, Vol. 102,
No. 5-6, 1984, pp. 213-215.
doi:10.1016/0375-9601(84)90693-5
[20] M. Musette and C. Verhoeven, “Nonlinear Superposition
(00)00081-6
Formula for the Kaup-Kupershmidt Partial Differential
Equation,” Physica D, Vol. 144, No. 1-2, 2000, pp. 211-
220. doi:10.1016/S0167-2789
ic Computation of [21] U. Goktas and W. Hereman, “Symbol
Conserved Densities for Systems of Nonlinear Evolution
Equations,” Journal of Symbolic Computation, Vol. 24,
No. 5, 1997, pp. 591-622. doi:10.1006/jsco.1997.0154
[22] D. Baldwin, U. Goktas, W. Hereman, L. Hong, R. S.
Martino and J. C. Miller, “Symbolic Computation of Ex-
act Solutions Expressible in Hyperbolic and Elliptic
Functions for Nonlinear PDEs,” Journal of Symbolic
Computation, Vol. 37, No. 6, 2004, pp. 699-705.
doi:10.1016/j.jsc.2003.09.004
Copyright © 2011 SciRes. AM