
L. Wu et al.
de1/cavity diameter de2) ratio. Besides the geometry of the end-cap structure, the generated open circuit output
voltages of the piezoelectric ceramic Cymbal transducer also depend on the metal thickness of end-cap, the gen-
erated open circuit voltage of piezoelectric ceramic Cymbal transducer with thick metal thickness is smaller than
that with thin metal thickness.
References
[1] Dogan, A., Uchino, K. and Newnham, R.E. (1997) Composite Piezoelectric Transducer with Truncated Conical End-
caps “Cymba l”. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 597-605.
http://dx.doi.org/10.1109/58.658312
[2] Meyer Jr., R. J., Dogan, A., Yoon, C., Pilgrim, S. M. and Newnham, R.E. (2001) Displacement Amplification of Elec-
troactive Materials Using the Cymbal Flextensional Transducer. Sens. Actuators A, 87, 157-162.
[3] Meyer Jr., R .J. , Hughes, W. J., Montgomery, T.C., Markl ey, D.C. and Newnham, R.E. (2002) Design of Fabrication
Improvements to the Cymbal Transducer Aided by Finite Element Analysis. J. Electroceram., 8, 163-174.
[4] Zhang, J., Hladky -Hennion, A.-C. , Hughes, W.J. and Ne wnham, R.E. (2001) Modeling and Underwater Characteriza-
tion of Cymbal Transducers and Arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48,
560-568. http://dx.doi.org/10.1109/58.911739
[5] Li, D.H . , Wu , M. , Oy a n g, P.X. and Xu, X.F. (2006) Cymbal Piezoelectric Composite Underwater Acoustic Transducer.
Ultrasonics, 44, e685-e687. http://dx.doi.org/10.1016/j.ultras.2006.05.127
[6] Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E. and Hofmann, H.F. (2004) Energy Harvest-
ing Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment. Japanese Journal of Applied Physics, 43,
6178-6183. http://dx.doi.org/10.1143/JJAP.43.6178
[7] Kim, H.W., Priya, S., Uchino, K. and Newnham, R.E. (2005) Piezoelectric Energy Harvesting under High Pre-Stressed
Cyclic Vibrations. Journal of Electroceramics, 15, 27-34. http://dx.doi.org/10.1007/s10832-005-0897-z
[8] Kim, H.W. , Priya, S. and Uchino, K. (2006) Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers.
Japanese Journal of Applied Physics, 45, 5836-5840. http://dx.doi.org/10.1143/JJAP.45.5836
[9] Kim, H.W., Priya, S., Stephanou, H. and Uchino, K. (2007) Consideration of Impedance Matching Techniques for Ef-
ficient Piezoelectric Energy Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45,
1851-1859. http://dx.doi.org/10.1109/TUFFC.2007.469
[10] Li, S.Z., Zheng, L., Li, D., Ai, L., Zhang, Z. , Guo, S.S. and Zhao, X.Z. (2011) Study of Energy Harvesting Using Pie-
zoelectric Cymbal Transducers. Material Science Forum, 687, 396-401.
http://dx.doi.org/10.4028/www.scientific.net/MSF.687.396
[11] Li, X., Guo, M. and Dong, S. (2011) A Flex-Compressive-Mode Piezoelectric Transducer for Mechanical Vibration/
Strain Energy Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 698-703.
http://dx.doi.org/10.1109/TUFFC.2011.1862
[12] Palosaari, J., Leinonen, M. , Hannu, J., Juati, J. and Jantunen, H. (2012) Energy Harvesting with A Cymbal Type Pie-
zoelectric Transducer from Low Frequency Compression. Journal of Electroceramics, 28, 214-219.
http://dx.doi.org/10.1007/s10832-012-9713-8
[13] Chure, M.C., Wu, L., Wu, K. K., Tung, C.C ., Lin, J.S. and Ma, W.C . (2014) Power Generation Characteristics of PZT
Piezoelectric Ceramics Using Drop Weight Impact Techniques: Effect of Dimensional Size. Ceramics International,
40, 341-345. http://dx.doi.org/10.1016/j.ceramint.2013.06.007