International Journal of Modern Nonlinear Theory and Application
Vol.03 No.05(2014), Article ID:52211,5 pages
10.4236/ijmnta.2014.35025
Performance of Suboptimal Controllers for Affine-Quadratic Problems
Ankita Sharma, A. J. Shaiju
Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
Email: ankita.iitm22@gmail.com, ajshaiju@iitm.ac.in
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/



Received 5 November 2014; revised 1 December 2014; accepted 9 December 2014
ABSTRACT
In this article, affine-quadratic control problems are studied. Error bounds are derived for the dif- ference between the performance indices corresponding to the optimal and a class of suboptimal controls. In particular, it is shown that the performance of these suboptimal controls is close to that of the optimal control whenever the error in estimating the costate initial condition is small.
Keywords:
Affine-Quadratic Control, Nonlinear Control, Optimal Control, Suboptimal Control

1. Introduction
One of the most active areas in control theory is optimal control and methods to find them [1] - [3] . It has a wide range of practical applications in engineering (Aerospace, Chemical, Mechanical, Electrical), science (Physics, Biology), and economics (see e.g. [4] - [7] ). Optimal control theory has been developed for linear systems ( [1] [2] [8] ) and explicit formulae for computing optimal control inputs are available. However, control of nonlinear systems is much more challenging and obtaining formulae for optimal controls seems in general not possible. This motivated researchers to study various classes of nonlinear control problems separately, and affine-qudratic problems is one such class. In a recent paper [9] , the optimal control for affine-quadratic problems is obtained in terms of the associated costate. But, in practice, it is difficult to compute the costate (at each time
) as the knowledge of its terminal condition is required.
In this article, we study the affine-quadratic control problem given by ((1), (2)). We note that a method for finding the initial condition for the costate is recently proposed [10] . This allows one to compute the initial costate (at
) exactly or approximately. This approximation of the initial costate and the explicit formula for optimal control (as in [11] ) are shown, in this article, which give rise to suboptimal controls of practical importance. More precisely, our main theorem (Theorem 2) provides an upper bound for the difference in performance between these suboptimal and optimal control.
The article is organized as follows. In Section 2, the affine-quadratic control problem is described. We also explain how to obtain the optimal control in terms of costate. The main (Theorem 2) is proved in Section 3. This theorem provides a method to obtain the costate (without the knowledge of its terminal value) which results in an explicit formula and performance bounds for a class of suboptimal controls.
Notation: For
,
, and
, we use the notation
,
,
.
2. Problem Description
We consider the affine control system
, (1)
with the quadratic cost functional
. (2)
Here
is the state vector,
is the control vector,
,
,
,
,
, and ' denotes transposition.
Throughout this paper, it is assumed that
are positive semidefinite,



from the admissible control space
Under these assumptions, for each admissible control

the control system (1) denoted by
The value function of the control problem given by (1), (2), is defined as

A control input



Similarly a control input




Given



where

To derive an expression for the optimal control


system:

Here
control system (1), (2), which provides a set of necessary conditions for

Theorem 1 [PMP] Let



corresponding to



for

attains minimum at

Corollary 1 Let



corresponding to




Proof. The proof follows immediately from the above theorem. □
Now to obtain


together with the initial conditions


In general, solving this coupled system and finding a closed form solution

it may be easier to find




difference between the performance indices corresponding to


3. Performance of suboptimal controllers
In this section, we prove the main result.
Theorem 2 Consider the affine-quadratic control problem (1), (2). Let

control as given in (5),




Also let


initial condition

where
The constant



Proof. Note that
(6)
From R.H.S. of (6), we first consider the term

By adding and subtracting

Therefore

From R.H.S. of (6), we next consider the term

In a similar manner (as for (7)), we have

From R.H.S. of (6), we next consider the term

Let us have
In the above term, put the







Now using assumption on the matrix function

Using this and following the procedure as for the inequality (7), we get
Therefore

Hence the result follows by the inequalities (7), (8), and (9). □
Remark 3 It follows from the previous theorem that

This implies that







References
- Anderson, B.D.O. and Moore, J.B. (1989) Optimal Control: Linear Quadratic Methods. Prentice-Hall, Inc., Upper Saddle River.
- Zhou, K., Doyle, J.C. and Glover, K. (1996) Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River.
- Bardi, M. and Dolcetta, I.C. (2008) Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston.
- Tang, L., Zhao, L.D. and Guo, J. (2009) Research on Pricing Policies for Seasonal Goods Based on Optimal Control Theory. ICIC Express Letters, 3, 1333-1338.
- Garrard, W.L. and Jordan, J.M. (1977) Design of Nonlinear Automatic Flight Control Systems. Automatica, 13, 497-505. http://dx.doi.org/10.1016/0005-1098(77)90070-X
- Manousiouthakis, V. and Chmielewski, D.J. (2002) On Constrained Infinite-Time Nonlinear Optimal Control. Chemical Engineering Science, 57, 105-114. http://dx.doi.org/10.1016/S0009-2509(01)00359-1
- Notsu, T., Konishi, M. and Imai, J. (2008) Optimal Water Cooling Control for Plate Rolling. International Journal of Innovative Computing, Information and Control, 4, 3169-3181.
- Kalman, R.E. (1960) Contributions to the Theory of Optimal Control. Matematica Mexicana, 5, 102-119.
- Effati, S. and Nik, H.S. (2011) Solving a Class of Linear and Non-Linear Optimal Control Problems by Homotopy Perturbation Method. IMA Journal of Mathematical Control and Information, 28, 539-553. http://dx.doi.org/10.1093/imamci/dnr018
- Sharma, A. and Shaiju, A.J. (2014) Solution of Affine-Quadratic Control Problems. Proceedings of the 19th WC-IFAC, Cape-Town.
- Jajarmi, A., Pariz, N., Kamyad, A.V. and Effati, S. (2011) A Novel Series Representation Approach to Solve a Class of Nonlinear Optimal Control Problems. International Journal of Innovative Computing, Information and Control, 7, 1413-1425.
- Pontryagin, L.S., et al. (1962) The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc., New York.








